Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Du Lâm Đồng

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Du Lâm Đồng Bản PDF Đề thi học kỳ 2 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Du – Lâm Đồng mã đề 132 gồm 03 trang với 30 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài thi là 90 phút, đề thi có đáp án phần trắc nghiệm và lời giải chi tiết phần tự luận. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Du – Lâm Đồng : + Trong các mệnh đề sau, mệnh đề nào sai ? A. Trong không gian, hai đường thẳng vuông góc với nhau thì có thể cắt nhau hoặc chéo nhau. B. Trong không gian cho hai đường thẳng song song. Đường thẳng nào vuông góc với đường thẳng này thì vuông góc với đường thẳng kia. C. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau. D. Trong mặt phẳng, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a. SA vuông góc với mặt phẳng (ABC), M là trung điểm của BC. SA = a√3. a) Chứng minh mặt phẳng (SBC) vuông góc với mặt phẳng (SAM). b) Tính góc giữa đường thẳng SM và mặt phẳng (ABC). c) Tính khoảng cách giữa hai đường thẳng AM và SC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc với mặt phẳng (ABCD). Gọi I là trung điểm SC. Chọn khẳng định sai: A. Mặt phẳng (SAC) là mặt phẳng trung trực của đoạn BD. B. AB vuông góc (SAC). C. BD vuông góc SC. D. IO vuông góc (ABCD).

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Quang Khải TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.