Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán cấp trường năm 2023 - 2024 trường chuyên Nguyễn Trãi - Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra chọn đội tuyển học sinh giỏi môn Toán cấp trường năm học 2023 – 2024 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 04 tháng 09 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương : + Cho tam giác ABC có đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB tại D, E, F. H là hình chiếu của A trên BC. N là trung điểm của AH. Đường thẳng qua D, N cắt CA, AB lần lượt tại J, S; BJ cắt CS tại P. Các đường thẳng DA, DP lần lượt cắt (I) tại G, L. Gọi EF cắt BC tại X. a) Chứng minh rằng A, P, X thẳng hàng. b) Gọi K, T theo thứ tự là giao điểm thứ hai của DI, DN và (I). Chứng minh: K, T, X thẳng hàng. c) Chứng minh rằng bốn điểm B, C, G, L cùng nằm trên một đường tròn. + Cho số nguyên dương n và p là số nguyên tố lẻ. Giả sử n = qp + r với 0 =< r =< p − 1 và q nguyên dương. Đặt. Sn. a) Khi p = 3, chỉ ra một giá trị n nguyên dương lớn hơn 5 sao cho Sn chia hết cho p. b) Chứng minh rằng nếu p là ước của Sn thì q là số lẻ. + Tìm tất cả các số nguyên dương n sao cho có thể phân chia tập {1; 2; …; 3n} thành n tập con 3 phần tử rời nhau {a; b; c} sao cho b – a và c − b là các số khác nhau trong tập {n − 1; n; n + 1}.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 12 THPT năm học 2018 - 2019 sở GD và ĐT Hà Nội
Đề thi chọn HSG Toán 12 THPT năm học 2018 – 2019 sở GD và ĐT Hà Nội gồm 1 trang với 5 bài toán tự luận, thí sinh có 180 phút để làm bài, kỳ thi được diễn ra vào ngày 14 tháng 09 năm 2018 nhằm tuyển chọn các em học sinh lớp 12 có năng khiếu môn Toán để bồi dưỡng, đào tạo.
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 - 2018 sở GDĐT An Giang
Đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh năm 2017 – 2018 sở GD&ĐT An Giang gồm 10 bài toán, thí sinh làm bài trong khoảng thời gian 120 phút, kỳ thi được tổ chức ngày 31/3/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi giải toán 12 trên máy tính cầm tay cấp tỉnh : + Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t(h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đường thẳng có hệ số góc k = 1/4. Tính quãng đường mà vật di chuyển được trong 6 giờ. [ads] + Một nhà thực vật học đo chiều dài của 100 lá cây và trình bày mẫu số liệu ở bảng bên (đơn vị: cm). Hỏi chiều dài lá cây trung bình là bao nhiêu? Tính phương sai; độ lệch chuẩncủa mẫu số liệu. + Hai khối hình hộp chữ nhật có kích thước 10 x 18 x l được đặt hai bên một khối trụ tròn xoay có chiều dài để ngăn chặn nó tự lăn. Khối thứ nhất chêm bên phải có mặt 10 x l áp sát với mặt đất, khối thứ hai chêm bên trái có mặt 18 x l áp sát với mặt đất. Biết phần dôi ra bên trái lớn hơn phân dôi ra bên phải 4 đơn vị. Tính bán kính của khối trụ.
Đề thi chọn HSG tỉnh Toán 12 năm 2017 - 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.