Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Trà Vinh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Trà Vinh; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bản chính thức do sở Giáo dục và Đào tạo tỉnh Trà Vinh công bố). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Trà Vinh : + Trong kỳ thi tuyển sinh vào lớp 10 trung học phổ thông chuyên, tổng số học sinh trúng tuyển của hai trường A và B là 22 em, chiếm tỉ lệ 40% trên tổng số học sinh dự thi của hai trường trên. Nếu tính riêng từng trường thì trường A có 50% học sinh dự thi trúng tuyển và trường B có 28% học sinh dự thi trúng tuyển. Hỏi mỗi trường có bao nhiêu học sinh dự thi? + Đầu năm học, trường A mua 245 quyển sách tham khảo gồm hai môn Toán và Ngữ văn. Cuối năm học, nhà trường đã dùng 1 2 số sách Toán và 2 3 số sách Ngữ văn để khen thưởng cho học sinh giỏi. Biết rằng mỗi học sinh giỏi nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi đầu năm học trường A mua mỗi loại bao nhiêu quyển sách? + Cho hình chữ nhật ABCD, kẻ CM vuông góc với BD (M BD) Gọi I, J lần lượt là trung điểm của MB và AD. Chứng minh IJ và IC vuông góc với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT An Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang : + Cho hàm số y = (√3 − 1)x + 1 có đồ thị là đường thẳng (d). 1. Vẽ đồ thị (d) của hàm số đã cho trên mặt phẳng tọa độ. 2. Đường thẳng (d0) song song với (d) và đi qua điểm có tọa độ (0;3). Đường thẳng (d) và (d0) cắt trục hoành lần lượt tại A; B, cắt trục tung lần lượt tại D; C. Tính diện tích tứ giác ABCD. + Trên đường tròn đường kính AD lấy hai điểm B và C khác phía với AD sao cho BAC = 60◦. Từ B kẻ BE vuông góc với AC (E ∈ AC). 1. Chứng minh rằng hai tam giác ABD và BEC đồng dạng. 2. Biết EC = 3cm. Tính độ dài dây BD. + Trên mỗi đỉnh của một đa giác có 12 cạnh người ta ghi một số, mỗi số trên một đỉnh là tổng của hai số ở hai đỉnh liền kề. Biết hai số ở hai đỉnh A5 và A9 là 10 và 9. Tìm số ở đỉnh A1.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Bình Định
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định dành cho các thí sinh thi vào các lớp chuyên Toán; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. + Cho tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O). Gọi M là điểm bất kì trên cung nhỏ BC. Chứng minh rằng MA > MB + MC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn tâm O. Gọi D là trung điểm cạnh BC và E, F tương ứng là hình chiếu vuông góc của D lên AC và AB. Đường thẳng EF cắt các đường thẳng AO và BC theo thứ tự M và N. (a) Chứng minh tứ giác AMDN nội tiếp. (b) Gọi K là giao điểm của AB và ED, L là giao điểm của AC và FD, H là trung điểm của KL và I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh HI ⊥ EF.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 trường THPT chuyên Thái Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình được dành cho các thí sinh thi vào các lớp chuyên Toán và chuyên Tin học; kỳ thi được tổ chức ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình : + Cho biểu thức P = (x − 2)2x + 2√x − 1. Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. + Cho P(x) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn P(0) = 21; P(1) = 7. Chứng minh rằng P(x) không có nghiệm nguyên. + Giả sử phương trình 2×2 + 2ax + 1 − b = 0 có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng a2 − b2 + 2 là số nguyên và không chia hết cho 3.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Long
Chủ Nhật ngày 19 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long gồm có 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long : + Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi. + Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4 cm, CH = 9 cm. a) Tính độ dài đường cao AH và số đo ABH (làm tròn đến độ). b) Vẽ đường trung tuyến AM của tam giác ABC (M thuộc BC), tính diện tích tam giác AHM. [ads] + Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng d vuông góc với OA tại M (M khác O, A). Trên d lấy điểm N sao cho N nằm bên ngoài nửa đường tròn (O). Kẻ tiếp tuyến NE với nửa đường tròn (O) (E là tiếp điểm, E và A nằm cùng một phía đối với đường thẳng d). a) Chứng minh tứ giác OMEN nội tiếp được đường tròn. b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh NE^2 = NC.NB. c) Gọi H là giao điểm của AC và d, F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh NEF = NOF.