Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Phan Châu Trinh Đà Nẵng

Nội dung Đề học kì 2 (HK2) lớp 11 môn Toán năm 2022 2023 trường THPT Phan Châu Trinh Đà Nẵng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Phan Châu Trinh, thành phố Đà Nẵng; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề học kì 2 Toán lớp 11 năm 2022 – 2023 trường THPT Phan Châu Trinh – Đà Nẵng : + Chọn khẳng định đúng trong các khẳng định sau: A. Hình chóp tam giác đều có tất cả các mặt là các tam giác bằng nhau. B. Hình chóp tam giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tam giác đều là tứ diện đều. D. Tứ diện đều là hình chóp tam giác đều. + Xét các mệnh đề sau: 1. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với hai đường thẳng phân biệt nằm trong (P). 2. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với hai đường thẳng bất kì cắt nhau nằm trong (P). 3. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với đường thẳng nằm trong (P). 4. Đường thẳng d vuông góc với mặt phẳng (P) nếu d vuông góc với mọi đường thẳng nằm trong (P). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O AB a AD a 2. Cạnh SA vuông góc với mặt phẳng đáy, góc giữa cạnh SD và mặt phẳng đáy bằng 0 60. a) Xác định góc giữa cạnh SD và mặt phẳng đáy. Từ đó tính độ dài đường cao của hình chóp. b) Gọi M và N lần lượt là trung điểm của cạnh BC và cạnh CD. Tính khoảng cách giữa hai đường thẳng SO và MN. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 11 năm học 2016 - 2017 trường THPT Lê Quảng Chí - Hà Tĩnh
Đề thi HK2 Toán 11 năm học 2016 – 2017 trường THPT Lê Quảng Chí – Hà Tĩnh gồm 2 mã đề, mỗi mã đề gồm 12 câu hỏi trắc nghiệm và 3 bài toán tự luận, đề thi có đáp án trắc nghiệm và lời giải phần tự luận.
Đề thi HK2 Toán 11 năm học 2016 - 2017 sở GD và ĐT Bình Phước
Đề thi HK2 Toán 11 năm học 2016 – 2017 sở GD và ĐT Bình Phước gồm 28 câu hỏi trắc nghiệm và 3 bài toán tự luận. Trích một số bài toán trong đề: + Một cấp số nhân có số hạng đầu là 3, công bội bằng -2. Hỏi 768 là số hạng thứ mấy? + Phát biểu nào sau đây là sai? A. Hình lăng trụcó các mặt bên là hình bình hành B. Các mặt bên của hình lăng trụlà hình chữ nhật C. Các mặt bên của hình chóp cụt là những hình thang D. Hình hộp là lăng trụcó đáy là hình bình hành + 19: Phát biểu nào sau đây là sai? A. Hình biểu diễn của một hình thang có thể là một hình bình hành B. Hình biểu diễn của một tam giác đều có thể là một tam giác C. Hình biểu diễn của một đường tròn có thể là một elip D. Hình biểu diễn của một hình vuông có thể là một hình bình hành
Đề thi HK2 Toán 11 năm học 2016 - 2017 trường THPT Trường Định - Hà Nội
Đề thi HK2 Toán 11 năm học 2016 – 2017 trường THPT Trường Định – Hà Nội gồm 20 câu hỏi trắc nghiệm và 2 bài toán tự luận. Trích một số bài toán trong đề: + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Các cạnh bên của hình chóp S.ABC tạo với mặt đáy các góc bằng nhau và bằng c. Khẳng định nào sau đây là đúng? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt đáy. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc nào sau đây? + Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, cạnh bên SA vuông góc với mặt đáy và SA = a. Gọi E là trung điểm của đoạn AC a) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (SBE) b) Tính khoảng cách giữa hai đường thẳng SB và AC
Đề thi HK2 Toán 11 năm học 2016 - 2017 trường THPT Chu Văn An - Hà Nội
Đề thi HK2 Toán 11 năm học 2016 – 2017 trường THPT Chu Văn An – Hà Nội gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và CD. Đường thẳng SM vuông góc với mặt phẳng (ABCD) và SM = a a) Chứng minh rằng đường thẳng CD vuông góc với mặt phẳng (ABCD) b) Tính số đo của góc giữa đường thẳng SC và mặt phẳng (ABCD) c) Tính số đo góc giữa mặt phẳng (SAB) và mặt phẳng (SCD) d) Gọi I là giao điểm của hai đường thẳng BD và CM. Tính theo a khoảng cách từ điểm I đến mặt phẳng (SCD)