Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Ninh Bình

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Ninh Bình Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Ninh Bình Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Ninh Bình. Đề thi bao gồm đáp án và lời giải chi tiết, sẽ diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn một số câu hỏi trong đề tuyển sinh: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 4 km/h, vì vậy thời gian về ít hơn thời gian đi là 30 phút. Hãy tính vận tốc của người đi xe đạp khi đi từ A đến B. 2. Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). a) Chứng minh tứ giác ABOC là tứ giác nội tiêp. b) Vẽ cát tuyến ADE không đi qua tâm O của đường tròn (D nằm giữa A và E). Gọi M là trung điểm của DE. Chứng minh MA là tia phân giác của góc BMC. 3. Một dụng cụ đựng chất lỏng có dạng hình trụ với chiều cao bằng 3dm và bán kính đáy bằng 2dm. Dụng cụ này đựng được bao nhiêu lít chất lỏng? (Bỏ qua độ dày của thành và đáy dụng cụ: lấy pi = 3,14). Đề tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Ninh Bình sẽ là cơ hội để các em học sinh thử sức và nâng cao kiến thức của mình. Mong rằng đề thi sẽ giúp các em hiểu rõ hơn về các kiến thức Toán cơ bản.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.
Đề thi vào 10 môn Toán (chung) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dùng chung cho tất cả các thí sinh) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chung) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Tìm m, n để đường thẳng (d): y = mx + n đi qua điểm A(2;3) và cắt đường thẳng y = x – 2 tại điểm có hoành độ bằng −1. + Cho phương trình x2 − 2(m + 1)x + m2 + 4 = 0 (m là tham số). 1. Giải phương trình khi m = 6. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn 6×12 + 6x1x2 = (m + 1)(x13 + x23 – 12×2). + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C không trùng với B sao cho CA > CB. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên AB, E là giao điểm của hai đường thẳng OD và AC. 1. Chứng minh tứ giác OADC nội tiếp đường tròn. 2. Gọi F là giao điểm của hai đường thẳng CD và AB. Chứng minh 2BCF + CFB = 90. 3. Gọi M là giao điểm của hai đường thẳng BD và CH. Chứng minh OC/EM – EO/ED = 1.