Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 kỹ thuật đạt điểm tối đa nguyên hàm - tích phân - Nguyễn Tiến Đạt

Nguyên hàm – tích phân là một mảng rất rộng và bao hàm nhiều dạng bài và phương pháp xử lý khác nhau. Đặc biệt khi lên đại học, những nghành liên quan đến kỹ thuật, chúng ta sẽ tiếp cận Nguyên Hàm – Tích Phân ở mức độ cao hơn. Tuy nhiên trong khuôn khổ kỳ thi THPT Quốc gia 2017, thầy đã chắt lọc cho các em trong cuốn sách này: + Đầy đủ những phương pháp chắc chắn có trong đề thi, bám sát cấu trúc đề của Bộ Giáo Dục + Nhiều ví dụ đa dạng và giải chi tiết theo hướng Step by Step (từng bước), dù là học sinh mất gốc vẫn có thể sử dụng cuốn sách này + Đề trắc nghiệm theo mọi hướng để các em tiếp cận được rộng nhất + Kết hợp các phương pháp sử dụng máy tính Casio, Vinacal Thầy tự tin khẳng định rằng, khi các em sử dụng thành thạo 8 kỹ thuật trong cuốn sách này, việc đạt điểm tối đa chuyên đề Nguyên Hàm – Tích Phân là cực kỳ đơn giản! [ads] Nội dung tài liệu : Nguyên hàm A. Định nghĩa và tính chất B. Bảng các nguyên hàm, đạo hàm cơ bản Trắc nghiệm lý thuyết nguyên hàm Đáp án trắc nghiệm lý thuyết nguyên hàm Kỹ thuật 1. Sử dung bảng nguyên hàm cơ bản Kỹ thuật 2. Tính nguyên hàm của hàm số hữu tỷ Kỹ thuật 3. Đổi biến dạng 1 Tích phân Trắc nghiệm lý thuyết tích phân Đáp án trắc nghiệm lý thuyết tích phân Kỹ thuật 4. Tích phân lượng giác 1. Công thức lượng giác thường sử dụng Dạng 4.1. Sử dụng công thức nguyên hàm cơ bản Dạng 4.2. Dùng công thức hạ bậc Dạng 4.3. Dùng công thức biến đổi tích thành tổng Dạng 4.4. Đổi biến số Dạng 4.4.1. Kết hợp 1 trong 4 dạng a, b, c, d với d(sinx) = cosx, d(cosx) = -sinx Dạng 4.4.2. Kết hợp 1 trong 4 dạng a, b, c, d và d((sinx)^2) = sin2xdx, d((cosx)^2) = -2sin2xdx Dạng 4.4.3 kết hợp 1 trong 4 dạng a, b, c, d và d(tanx) = 1/(cosx)^2.dx = (1 + (tanx)^2)dx; d(cotx) = -1/(sinx)^2.dx = -(1 + (cotx)^2)dx Dạng 4.4.4. Kết hợp 1 trong 4 dạng a, b, c, d và d(sinx ± cosx) = (cosx ± sinx)dx Kỹ thuật 5. Đổi biến số dạng 2 Kỹ thuật 6. Tích phân từng phần Kỹ thuật 7. Tích phân chứa giá trị tuyệt đối Ứng dụng tích phân 1. Tính diện tích hình phẳng 1.1. Diện tích hình thang cong 1.2. Diện tích hình phẳng 2. Tính thể tích khối tròn xoay 3. Bài toán chuyển động Kỹ thuật 8. Sử dụng máy tính Casio – Vinacal trong giải toán nguyên hàm – tích phân Dạng 1. Tìm nguyên hàm F(x) của hàm số f(x) Dạng 2. Tìm nguyên hàm F(x) của hàm số f(x) khi biết F(x0) = M Dạng 3. Tính tích phân Dạng 4. Tìm a, b sao cho tích phân của hàm số f(x) trên đoạn [a; b] có giá trị bằng A Dạng 5. Tính diện tích, thể tích Dạng 6. Mối liên hệ giữa A, B, C Phụ lục A. Đề tổng hợp nguyên hàm – tích phân và đáp án B. Tích phân trong đề thi đại học 10 năm gần đây

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu ứng dụng tích phân dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm ứng dụng tích phân: A. KIẾN THỨC CƠ BẢN 1. Diện tích hình phẳng. 2. Thể tích vật thể và thể tích khối tròn xoay. B. CÂU HỎI TRẮC NGHIỆM I – Câu hỏi tính diện tích hình phẳng giới hạn bởi các đường + Trường hợp 1. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$, $x = b$ là $S = \int_a^b | f(x) – g(x)|dx.$ + Trường hợp 2. Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên đoạn $[a;b].$ Diện tích hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$ là $S = \int_\alpha ^\beta | f(x) – g(x)|dx.$ Trong đó $\alpha $, $\beta $ là nghiệm nhỏ nhất và lớn nhất của phương trình $f(x) = g(x)$ $(a \le \alpha < \beta \le b).$ II – Câu hỏi tính tính thể tích vật tròn xoay giới hạn bởi các đường + Trường hợp 1. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = 0$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục $Ox$ là $V = \pi \int_a^b {{f^2}} (x)dx.$ + Trường hợp 2. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường $y = f(x)$, $y = g(x)$, $x = a$ và $x = b$ $(a < b)$ quay quanh trục Ox là $V = \pi \int_a^b {\left| {{f^2}(x) – {g^2}(x)} \right|dx} .$ C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm tích phân
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tích phân, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu tích phân dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tích phân: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa tích phân. 2. Tính chất của tích phân. B. KỸ NĂNG CƠ BẢN 1. Dạng 1 : Tính tích phân theo công thức. 2. Dạng 2 : Dùng tính chất cận trung gian để tính tích phân. Sử dụng tính chất $\int_a^b {[f(x) + g(x)]dx} $ $ = \int_a^b f (x)dx + \int_a^b g (x)dx$ để bỏ dấu giá trị tuyệt đối. [ads] 3. Dạng 3 : Phương pháp đổi biến số. + Đổi biến số dạng 1: Cho hàm số $f$ liên tục trên đoạn $[a;b].$ Giả sử hàm số $u = u(x)$ có đạo hàm liên tục trên đoạn $[a;b]$ và $\alpha \le u(x) \le \beta .$ Giả sử có thể viết $f(x) = g(u(x))u'(x)$, $x \in [a;b]$ với $g$ liên tục trên đoạn $[\alpha ; \beta.]$ Khi đó, ta có $I = \int_a^b f (x)dx$ $ = \int_{u(a)}^{u(b)} g (u)du.$ + Đổi biến số dạng 2: Cho hàm số $f$ liên tục và có đạo hàm trên đoạn $[a;b].$ Giả sử hàm số $x = \varphi (t)$ có đạo hàm và liên tục trên đoạn $[\alpha ;\beta ]$ sao cho $\varphi (\alpha ) = a$, $\varphi (\beta ) = b$ và $a \le \varphi (t) \le b$ với mọi $t \in [\alpha ;\beta ].$ Khi đó: $\int_a^b f (x)dx$ $ = \int_\alpha ^\beta f (\varphi (t))\varphi ‘(t)dt.$ 4. Dạng 4 : Phương pháp tính tích phân từng phần: Nếu $u = u(x)$ và $v = v(x)$ là hai hàm số có đạo hàm và liên tục trên đoạn $[a;b]$ thì $\int_a^b u (x)v'(x)dx$ $ = \left. {(u(x)v(x))} \right|_a^b – \int_a^b {u’} (x)v(x)dx.$ C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm nguyên hàm
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm nguyên hàm, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Bên cạnh tài liệu nguyên hàm dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm nguyên hàm: A. KIẾN THỨC CƠ BẢN I. NGUYÊN HÀM VÀ TÍNH CHẤT 1. Nguyên hàm. 2. Tính chất của nguyên hàm. 3. Sự tồn tại của nguyên hàm. 4. Bảng nguyên hàm của một số hàm số sơ cấp. + Nguyên hàm của hàm số sơ cấp. + Nguyên hàm của hàm số hợp. II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM 1. Phương pháp đổi biến số. 2. Phương pháp nguyên hàm từng phần. B. KỸ NĂNG CƠ BẢN + Tìm nguyên hàm bằng phương pháp biến đổi trực tiếp. + Tìm nguyên hàm bằng phương pháp đổi biến số. + Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. C. BÀI TẬP TRẮC NGHIỆM
Tài liệu tự học nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng
Tài liệu gồm 80 trang được biên soạn bởi thầy giáo Nguyễn Trọng, hướng dẫn tự học chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3, tài liệu phù hợp với học sinh các lớp theo học chương trình Toán 12 cơ bản. Khái quát nội dung tài liệu tự học nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: BÀI 1 : NGUYÊN HÀM. Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 2. Đổi biến. Dạng 3. Từng phần. + Bài toán 1. $I = \int P (x)\left[ {\begin{array}{*{20}{l}} {\sin x}\\ {\cos x} \end{array}} \right]dx$ trong đó $P(x)$ là đa thức. + Bài toán 2. $I = \int P (x){e^{ax + b}}dx$ trong đó $P(x)$ là đa thức. + Bài toán 3. $I = \int P (x)\ln (mx + n)dx$ trong đó $P(x)$ là đa thức. BÀI 2 : TÍCH PHÂN ĐỔI BIẾN SỐ. Dạng 1. Đổi biến số dạng 1. Dạng 2. Đổi biến số dạng 2. Biểu thức dưới dấu tích phân có dạng: $\sqrt {{a^2} – {x^2}} $, $\sqrt {{x^2} – {a^2}} $, $\sqrt {{x^2} + {a^2}} $, $\sqrt {\frac{{a + x}}{{a – x}}} $ hoặc $\sqrt {\frac{{a – x}}{{a + x}}} .$ [ads] BÀI 3 : TÍCH PHÂN TỪNG PHẦN. Dạng 1. $\int_\alpha ^\beta f (x)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx.$ Dạng 2. $\int_a^\beta f (x)\ln (ax)dx.$ Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} .\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx.$ BÀI 4 : ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC. Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. + Bài toán 1. Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = f(x)$ liên tục trên đoạn $[a;b]$, trục hoành và hai đường thẳng $x = a$ và $x = b.$ + Bài toán 2. Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = f(x)$, $y = g(x)$ liên tục trên đoạn $[a;b]$ và hai đường thẳng $x = a$ và $x = b.$ Dạng 2. Ứng dụng của tích phân tính thể tích. + Bài toán 1: Tính thể tích vật thể tròn xoay sinh bởi miền $D$ giới hạn bởi $y = f(x)$; $y = 0$ và $x = a$, $x = b$ khi quay quanh trục $Ox.$ + Bài toán 2: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: $y = f(x)$; $y = g(x)$ quay quanh trục $Ox.$ + Bài toán 3: Tính thể tích vật thể tròn xoay khi cho hình phẳng giới hạn bởi: $x = g(y)$; $y = a$; $y = b.$ + Bài toán 4: Tính thể tích vật thể tròn xoay do hình phẳng giới hạn $x = f(y)$; $x = g(y)$; $y = a$; $y = b.$