Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 3 năm 2023 trường THCS Hồng Bàng Hải Phòng

Nội dung Đề thi thử Toán vào lần 3 năm 2023 trường THCS Hồng Bàng Hải Phòng Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 3 năm 2023 trường THCS Hồng Bàng Hải Phòng Đề thi thử Toán vào lần 3 năm 2023 trường THCS Hồng Bàng Hải Phòng Để giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT, Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử môn Toán lần 3 năm 2023 của trường THCS Hồng Bàng, Hải Phòng. Đề thi bao gồm các câu hỏi thú vị và thú vị. Bài 1: Bác Hà gửi vào ngân hàng 100 triệu đồng với lãi suất 8% một năm theo thể thức lãi đơn. Hãy thiết lập hàm số thể hiện mối liên hệ giữa tổng số tiền thu được sau x năm. Hỏi sau bao lâu bác Hà thu được số tiền 140 triệu đồng? Bài 2: Giải bài toán bằng cách lập phương trình: Trong tháng 3, tổng số tiền điện và tiền nước của nhà ông Hùng là 600 nghìn đồng. Trong tháng 4, số tiền điện giảm 15%, số tiền nước tăng 5%, tổng số tiền điện và nước là 534 nghìn đồng. Hỏi trong tháng 3, ông Hùng phải trả bao nhiêu tiền điện và nước? Bài 3: Một chiếc cốc thủy tinh có dạng hình trụ chứa nước, chiều cao 15 cm, bán kính đáy 3 cm. Thả vào cốc nước một vật thể hình nón, nước tràn ra ngoài. Tính thể tích lượng nước còn lại trong cốc biết rằng chiều cao hình nón bằng 1/3 chiều cao cốc, đường kính đáy cốc và đáy hình nón bằng nhau. Với bộ đề thi thử này, chúng tôi hy vọng các em sẽ có cơ hội rèn luyện kỹ năng giải các bài toán Toán một cách thông minh và sáng tạo. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2mx + m – 2 = 0 (m là tham số). a) Tìm tất cả các giá trị m để phương trình có hai nghiệm phân biệt dương. b) Gọi x1 và x2 là các nghiệm của phương trình. Tìm m để biểu thức M đạt giá trị nhỏ nhất. + Chứng minh rằng: A = a7 – a chia hết cho 7 với mọi a thuộc Z. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm BC; BE và CF là các đường cao (E và F là chân các đường cao). Các tiếp tuyến với đường tròn (O) tại B và C cắt nhau tại S. Gọi N và P lần lượt là giao điểm của BS với EF và AS với (O) (P khác A) . Chứng minh rằng: a) MN vuông góc BF. b) AB.CP = AC.BP. c) CAM = BAP.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – (m + 3)x + 2m + 2 = 0 với m là tham số. Tìm giá trị của tham số m để: a) Phương trình có nghiệm x = 3. b) Phương trình có hai nghiệm phân biệt x1 và x2 sao cho x12 + x22 = 13. + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối mỗi vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng của mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn người đó thu được là 252 triệu đồng. + Cho tam giác ABC có ba góc đều nhọn. Các đường cao AK, BE và CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH, N là trung điểm của đoạn BC. a) Chứng minh bốn điểm A, E, H, F nằm trên cùng một đường tròn. b) Chứng minh NE là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh CI2 – IE2 = CK.CB.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Hai đội công nhân cùng làm một công việc thì hoàn thành trong 12 ngày. Nếu họ làm riêng thì đội II hoàn thành công việc hết nhiều thời gian hơn đội I là 10 ngày. Hỏi nếu làm riêng, mỗi đội phải làm trong bao nhiêu ngày để xong công việc. + Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M là một điểm thuộc cung nhỏ BC (M khác B, M khác C), hai đường thẳng AM và CD cắt nhau tại E. a) Chứng minh tứ giác BMEF nội tiếp. b) Chứng minh tia MA là phân giác của CMD. c) Chứng minh AC2 = AE.AM. d) Gọi I là giao điểm của hai đường thẳng MD và AB, N là giao điểm của hai đường thẳng AM và BC. Chứng minh tâm đường tròn ngoại tiếp tam giác CEN nằm trên đường thẳng CI. + Một tỉnh dự định làm đường điện từ điểm M trên bờ biển đến điểm B trên một hòn đảo. B cách bờ một khoảng BB’ = 2 km, A cách B’ một khoảng AB’ = 3 km (hình vẽ). Biết chi phí làm 1 km đường điện trên bờ là 5 tỷ đồng, dưới biển nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 trường Đại học Sư Phạm Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2); kỳ thi được diễn ra vào chiều thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Văn Hoàng – Nguyễn Khang – Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội : + Cho đa thức P(x) = ax2 + bx + c (a khác 0). Chứng minh rằng nếu P(x) nhận giá trị nguyên với mỗi số nguyên x thì ba số 2a, a + b, c đều là những số nguyên. Sau đó chứng tỏ nếu ba số 2a, a + b, c là những số nguyên thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. + Cho tam giác ABC đều ngoại tiếp (O). Cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh rằng: EO là tia phân giác góc CEF. b) Chứng minh rằng: ABOF là tứ giác nội tiếp. c) Gọi D là giao điểm thứ hai của CE và đường tròn (O). Chứng minh rằng A, F, D thẳng hàng. + Ta viết 10 số 0, 1, …, 9 vào mười ô tròn trong hình bên, mỗi số được viết đúng 1 lần. Sau đó, ta tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có hay không một cách viết 10 số như thế sao cho 6 tổng nhận được là bằng nhau?