Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn ôn tập HK1 Toán 8 năm 2022 - 2023 trường THCS Chu Văn An - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập cuối học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội. I. TÓM TẮT NỘI DUNG KIẾN THỨC HỌC KỲ I A. ĐẠI SỐ. 1. Nhân, chia đơn thức, đa thức. 2. Những hằng đẳng thức đáng nhớ. 3. Các phương pháp phân tích đa thức thành nhân tử. 4. Định nghĩa và tính chất cơ bản của phân thức đại số. 5. Các quy tắc đổi dấu của phân thức đại số. 6. Các quy tắc: Rút gọn phân thức, quy đồng mẫu thức, cộng, trừ, nhân phân thức. 7. Điều kiện xác định phân thức và giá trị của phân thức. B. HÌNH HỌC. 1. Định nghĩa, tính chất và dấu hiệu nhận biết các tứ giác (tứ giác lồi, hình thang, hình thang vuông, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông). 2. Phép đối xứng trục, đối xứng tâm. 3. Tập hợp các điểm cách một đường thẳng cho trước một khoảng xác định không đổi. 4. Khái niệm đa giác, đa giác lồi, diện tích hình chữ nhật, diện tích tam giác. II. MỘT SỐ CÂU HỎI, BÀI TẬP THAM KHẢO

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.
Chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 24 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề phương trình nghiệm nguyên bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng tính chất 2 a a k. Dạng 2. Đưa về tổng các số chính phương. Dạng 3. Đưa về phương trình tích. Dạng 4. Đưa về ước số. Dạng 5. Sử dụng bất đẳng thức.
Chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8. 1. Phương pháp đặt nhân tử chung 2. 2. Phương pháp dùng hằng đẳng thức 2. 3. Phương pháp nhóm hạng tử 4. 4. Phối hợp nhiều phương pháp 6. 5. Phương pháp tách hạng tử 11. + Dạng 1. Phân tích đa thức thành nhân tử của đa thức bậc hai 11. + Dạng 2. Phân tích đa thức thành nhân tử của đa thức bậc ba 11. + Dạng 3. Phân tích đa thức thành nhân tử của đa thức bậc bốn 13. + Dạng 4. Phân tích đa thức thành nhân tử của đa thức bậc cao 15. 6. Phương pháp thêm bớt cùng một hạng tử 16. 7. Phương pháp đổi biến số (hay đặt ẩn phụ) 18. + Dạng 1. Đặt biến phụ (x2 + ax + m)(x2 + ax + n) + p 18. + Dạng 2. Đặt biến phụ dạng (x + a)(x + b(x + c)(x + d) + e 19. + Dạng 3. Đặt biến phụ dạng (x + a)4 + (x + b)4 + c 21. + Dạng 4. Đặt biến phụ dạng đẳng cấp 21. + Dạng 5. Đặt biến phụ dạng khác 22. 8. Phương pháp hệ số bất định 25. 9. Phương pháp tìm nghiệm của đa thức 30. 10. Phương pháp xét giá trị riêng 32.
Chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định lý Bezout tìm số dư. Dạng 2. Tìm đa thức. Dạng 3. Tổng hợp.