Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT An Dương - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện An Dương, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT An Dương – Hải Phòng : + Giá niêm yết (đã bao gồm thuế VAT) của một chiếc bánh mì tại một siêu thị là 12000 đồng. Vào thời điểm cuối ngày, siêu thị đưa ra chương trình khuyến mại như sau: Nếu khách hàng mua nhiều hơn hai chiếc bánh mì, giá của hai chiếc bánh mì đầu tiên được tính theo giá niêm yết; giá của những chiếc bánh mì còn lại được tính bằng 50% giá niêm yết. a) Gọi y (đồng) là số tiền khách hàng phải trả khi mua x chiếc bánh mì. Lập công thức tính y theo x trong trường hợp x > 2. b) Vào thời điểm cuối ngày, tại siêu thị trên, bạn An dùng toàn bộ 60.000 đồng mà mình có để mua bánh mì. Hỏi bạn An mua được bao nhiêu chiếc bánh mì? + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai tàu hỏa khởi hành cùng lúc từ hai ga cách nhau 750 km, đi ngược chiều nhau và gặp nhau sau 10 giờ. Nếu tàu thứ nhất khởi hành trước tàu thứ hai 3 giờ 45 phút thì sau khi tàu thứ hai đi được 8 giờ, hai tàu sẽ gặp nhau. Tính vận tốc của mỗi tàu. + Một chi tiết máy có dạng hai khối hình trụ (T1) và (T2) xếp chồng lên nhau (hình bên). Bán kính đáy và chiều cao của hình trụ (T1) lần lượt là r1 = 2cm, h1 = 9cm. Bán kính đáy và chiều cao của hình trụ (T2) lần lượt là r2 = 4cm, h2 = 4,5 cm. Tính thể tích của chi tiết máy đó (tính theo cm3 và lấy pi ≈ 3,14).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Cho tam giác ABC vuông ở A (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ BC có chứa điểm A, vẽ nửa đường tròn tâm O đường kính BH cắt AB tại E; vẽ nửa đường tròn tâm O’ đường kính CH cắt AC tại F. Gọi I là giao điểm của AH và EF. a) Chứng minh AE.AB = AF.AC. b) Chứng minh EF là tiếp tuyến của đường tròn (O). c) Chứng minh BI vuông góc AO’. + Cho các số thực dương a, b, c thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng? + Cho đường tròn (O) đường kính bằng 6cm và dây MN bằng 2cm. Khoảng cách từ O đến dây MN bằng?
Đề khảo sát chất lượng Toán 9 năm 2018 - 2019 trường THCS Chu Văn An - Hà Nội lần 1
Đề khảo sát chất lượng Toán 9 năm 2018 – 2019 trường THCS Chu Văn An – Hà Nội lần 1 được biên soạn nhằm kiểm tra các kiến thức Toán 9 học sinh đã học, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đây là hình thức đề tương tự với các đề thi vào 10 môn Toán, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2018.
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề khảo sát chất lượng Toán 9 năm 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 1 trang với 5 bài toán tự luận, đề nhằm đánh giá kiến thức học sinh khối lớp 9 giai đoạn giữa HK2 năm học 2017 – 2018, đồng thời tạo cơ hội để các em được thử sức, rèn luyện chuẩn bị cho kỳ thi vào lớp 10 năm học 2018 – 2019 môn Toán, đề thi có lời giải chi tiết .
Đề thi khảo sát Toán 9 năm học 2017 - 2018 phòng GD và ĐT Ba Đình - Hà Nội
Đề thi khảo sát Toán 9 năm học 2017 – 2018 phòng GD và ĐT Ba Đình – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 03/03/2018 nhằm giúp học sinh khối 9 tại các trường THCS Phan Chu Trinh và THCS Mạc Đĩnh Chi (Hà Nội) rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán, đề thi có lời giải chi tiết . Trích dẫn đề thi khảo sát Toán 9 : + Để hoàn thành một công việc theo dự định, cần một số công nhân làm trong một số ngày nhất định. Nếu bớt đi 2 công nhân thì phải mất thêm 3 ngày mới có thể hoàn thành công việc. Nếu tăng thêm 5 công nhân thì công việc hoàn thành sớm được 4 ngày. Hỏi theo dự định, cần bao nhiêu công nhân và làm bao nhiêu ngày? + Cho phương trình x^2 – 2(m – 1)x – m^2 + m – 1 = 0 (x là ẩn số). a) Giải phương trình đã cho khi m = 2. b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi số thực m. [ads] + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H. 1. Chứng minh tứ giác BKHN là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHN. 2. Chứng minh góc KBH = KCA. 3. Gọi E là trung điểm của cạnh AC. Chúng minh KE là tiếp tuyến của đường tròn (I). 4. Đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc với ME.