Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 – 2m (với m là tham số). 1. Tìm m để đường thẳng (d) đi qua điểm A(2;1). 2. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B. Gọi x1, x2 lần lượt là hoành độ các điểm A, B. Tìm m để x1, x2 là độ dài hai cạnh của một hình chữ nhật có độ dài đường chéo bằng 14. + Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. + Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Gọi Ax và By là các tiếp tuyến tại A và B của đường tròn (O) (Ax và By cùng thuộc một nửa mặt phẳng bờ AB có chứa điểm E). Qua điểm E kẻ đường thẳng d vuông góc với E cắt Ax và By lần lượt tại M và N. 1. Chứng minh tứ giác AMEI nội tiếp. 2. Chứng minh ENI = EBI và AE.IN = BE.IM. 3. Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau. 4. Gọi F là điểm chính giữa của cung AB không chứa điểm E của đường tròn (O). Tính diện tích tam giác AMN theo R khi ba điểm E, I, F thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Lời giải của thầy Nguyễn Chí Dũng. Trích một số bài toán trong đề: + Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó (Ax nằm trên cùng nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc CAx cắt nửa đường tròn tại D. Kéo dài AD và BC cắt nhau tại E. Kẻ EH vuông góc với Ax tại H a. Chứng minh tứ giác AHEC nội tiếp. b. Chứng minh hai góc ABD và DBC bằng nhau. c. Chứng minh tam giác ABE cân. d. Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi. [ads] + Ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận là ngọn tháp thắp đèn gần bờ biển dùng để định hướng cho tàu thuyền giao thông trong khu vực vào ban đêm. Đây là ngọn Hải đăng được xem là cổ xưa và cao nhất Việt Nam, chiều cao của ngọn đèn so với mặt nước biển là 65m. Hỏi: a. Một người quan sát đứng tại vị trí đèn của Hải đăng nhìn xa tối đa bao nhiêu km trên mặt biển? b. Cách bao xa thì một người quan sát đứng ở trên tàu bắt đầu trông thấy ngọn đèn này, biết rằng mắt người quan sát đứng ở trên tàu có độ cao 5m so với mặt nước biển? (Cho biết bán kính Trái Đất gần bằng 6400km và điều kiện quan sát trên biển là không bị che khuất).
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lai Châu
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lâm Đồng gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Từ điểm P ngoài đường tròng (O), kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là hai tiếp điểm). Gọi M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M (CD không đi qua O và CD không trùng với AB ). Hai tiếp tuyến của đường tròn (O) tại C và D cắt nhau ở Q. Chứng minh rằng OP vuông góc với PQ. + Chứng minh rằng nếu n là là tự nhiên lớn hơn 1 thì 2^n – 1 không thể là số chính phương.