Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam Bản PDF Ngày … tháng 12 năm 2019, tổ Toán – Tin trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam gồm 4 mã đề: 072, 358, 641, 923; đề thi gồm 16 câu trắc nghiệm (chiếm 4 điểm) và 3 câu tự luận (chiếm 6 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + Trong các phép biến hình sau, phép biến hình nào không là một phép dời hình? A. Thực hiện liên tiếp hai phép quay. B. Thực hiện liên tiếp hai phép đối xứng trục. C. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số đối nhau. D. Thực hiện liên tiếp hai phép vị tự có cùng tâm và tỷ số vị tự là 2 số nghịch đảo của nhau. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB, CD. a) Chứng minh rằng: MN song song với mặt phẳng (SBC), (SAD). b) Gọi P là trung điểm SA. Chứng minh rằng: SB, SC song song với mặt phẳng (MNP). c) Gọi G1, G2 lần lượt là trọng tâm tam giác ABC, SBC. Chứng minh rằng: đường thẳng G1G2 song song với mặt phẳng (SAC). d) Dựng thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (PNG2). [ads] + Khẳng định nào trong các khẳng định sau là đúng? A. Nếu hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. B. Hai đường thẳng chéo nhau khi chúng không có điểm chung. C. Hai đường thẳng song song khi chúng ở trên cùng một mặt phẳng. D. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. + Cho tứ diện S.ABCD có đáy ABCD là hình thang có AB // CD. Gọi M, N và P lần lượt là trung điểm của SA, BC và AD. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. Đường thẳng qua S và song song với AB. B. Đường thẳng qua N và song song với SC. C. Đường thẳng qua M và song song với AB. D. Đường thẳng MN. + Trong một hộp có 10 viên bi màu xanh và 8 viên bi màu đỏ. Bạn Bình lấy ngẫu nhiên 1 viên bi (lấy xong không trả lại vào hộp), sau đó bạn An lấy tiếp 1 viên bi nữa. Tính xác suất để hai bạn lấy được bi cùng màu.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Cho hình chóp S.ABC. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. a) Tìm giao tuyến của hai mặt phẳng (SAN) và (SCM); (SAC) và (SMN). b) Gọi I là trung điểm của SC. Tìm giao điểm của AI với (SMN). c) Chứng minh: SM // (INP). d) Xác định thiết diện của hình chóp cắt bởi (MNI). + Từ một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không có quá hai quả cầu màu vàng. + Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1/2 và 1/3. Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Trong tiết học thực hành hóa, trên kệ đựng hóa chất có: 5 lọ dung dịch chứa axit, 6 lọ dung dịch chứa bazơ và 7 lọ dung dịch chứa muối và 4 lọ nước cất (giả sử các lọ mất nhãn và không màu). Một nhóm học sinh chọn ngẫu nhiên 5 lọ để làm thí nghiệm nhận biết, tính xác suất để chọn được đúng 4 lọ bazơ. + Một nhóm gồm 18 học sinh trong đó có 10 bạn có ngày sinh là ngày lẻ. Chọn ngẫu nhiên 5 học sinh trong nhóm trên để lao động, tính xác suất để tổng ngày sinh của 5 học sinh trên là số lẻ. + Vòng chung kết cuộc thi kể chuyện theo sách năm học 2019 – 2020 của trường THPT Phạm Văn Sáng có 8 học sinh dự thi, trong đó có hai học sinh khối 11 là Hùng và Hoa. Biết rằng mỗi học sinh kể một câu chuyện và được bốc thăm ngẫu nhiên thứ tự tham gia kể chuyện. Tính xác suất để Hùng và Hoa bốc được thăm có thứ tự là hai số tự nhiên liên tiếp.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trên kệ sách có 12 cuốn sách gồm có 4 quyển tiểu thuyết, 6 quyển truyện tranh và 2 quyển cổ tích. Lấy 3 quyển từ kệ sách, hỏi có bao nhiêu cách để lấy được 2 quyển tiểu thuyết? + Trong một hộp chứa 8 viên bi trắng, 6 viên bi đen, 5 viên bi đỏ. Lấy ngẫu nhiên ra 4 viên bi. Tính xác suất sao cho: a) 4 viên bi lấy ra gồm 3 viên bi đỏ, 1 viên bi trắng. b) 4 viên bi lấy ra không đủ cả ba màu. + Giải các phương trình lượng giác sau.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm ở lần gieo thứ nhất gấp ba lần số chấm ở lần gieo thứ hai. + Một hộp chứa 9 viên bi màu xanh và 8 viên bi màu đỏ. Lấy ngẫu nhiên đồng thời 6 viên bi từ hộp đã cho. Tính xác suất để số bi xanh bằng số bi đỏ. + Gọi S là tập hợp các số tự nhiên gồm hai chữ số khác nhau. Lấy ngẫu nhiên đồng thời hai phần tử của tập S. Tính xác suất để tổng hai số được chọn không chia hết cho 2.