Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 21 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Ngày của Cha hay còn gọi là Father’s Day là ngày để con bày tỏ lòng biết ơn và hiếu thảo đối với cha mình. Tương tự như Ngày của Mẹ, ngày của Cha cũng không cố định cụ thể mà được quy ước chọn ngày chủ nhật tuần thứ 3 của tháng 6 hàng năm. Nhân dịp lễ “Ngày của Cha – 19/6/2022”, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834 700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng ba của mình; Duy tính nhẩm: cùng ở siêu thị A, cùng số lượng, cùng mẫu mã nhưng nếu mua vào ngày 18/6/2022 (ngày mà siêu thị A không có khuyến mãi giảm giá các mặt hàng) thì chỉ với số tiền tiết kiệm được là 1 025 000 đồng bạn ấy không đủ tiền để mua hai món hàng này. Em hãy cho biết, bạn Duy tính nhẩm như vậy có đúng không? Biết rằng, nếu không giảm giá thì tiền mua mỗi đôi giày gấp 11 lần tiền mua mỗi chiếc cà vạt. + Cho phương trình: x2 + kx + 2 = 0 (k là tham số). a) Tìm k để phương trình có nghiệm kép, tìm nghiệm kép đó. b) Tìm k để phương trình có hai nghiệm x1, x2 thỏa mãn? + Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Kẻ hai tiếp tuyến AB, AC với đường tròn (O;R) (B và C là các tiếp điểm), tia AC cắt BC tại I. Điểm H thuộc đoạn thẳng BI (H khác B và H khác I). Đường thẳng d vuông góc với OH tại H; d cắt AB và AC lần lượt tại P và Q. a) Chứng minh tứ giác OHBP nội tiếp đường tròn. b) Chứng minh rằng: OP = OQ. c) Khi H là trung điểm của đoạn thẳng BI, tính độ dài đoạn thẳng BC và diện tích của OPQ theo R.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, với đáp án và lời giải chi tiết. Một số bài toán trong đề: 1. Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C). Hãy chứng minh AM.AB = AN.AC và AN.AC = MN^2. 2. Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Hãy chứng minh rằng IO vuông góc với đường thẳng MN. 3. Chứng minh rằng 4(EN^2 + FM^2) = BC^2 + 6AH^2. 4. Cho tam giác ABC vuông tại A, đường cao AH biết BH = 4cm và CH = 16cm. Độ dài đường cao AH bằng bao nhiêu? 5. Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm. Diện tích xung quanh của hình nón đã cho bằng bao nhiêu?
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Hải Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Hải Dương bao gồm 5 bài toán tự luận, được kèm theo lời giải chi tiết. Dưới đây là mô tả một số bài toán trong đề: 1. Trong tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, sau khi cải tiến kỹ thuật, tổ I vượt mức 10% và tổ II vượt mức 12% so với tháng đầu, tổng sản lượng đạt 1000 chi tiết máy. Hãy tính số chi tiết mỗi tổ sản xuất trong tháng đầu. 2. Cho đường tròn tâm O, bán kính R. Từ một điểm M ngoài đường tròn, kẻ hai tiếp tuyến MA và MB (A, B là tiếp điểm). Kế tiếp, qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB. Phân tích và giải quyết các yêu cầu sau: 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh: \(MN^2 = NF \times NA\) và \(MN = NH\). 3) Chứng minh: \(\frac{HB^2}{HF^2} - \frac{EF}{MF} = 1\). Mỗi bài toán đều đòi hỏi sự logic, kiến thức và kỹ năng phân tích từ học sinh để có thể giải quyết. Đề thi này không chỉ đánh giá kiến thức mà còn khuyến khích học sinh tư duy sáng tạo và khám phá trong quá trình giải quyết bài toán.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học TT Huế Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học TT Huế Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - Thừa Thiên Huế bao gồm 5 bài toán tự luận, với lời giải chi tiết để giúp học sinh hiểu rõ về từng bước giải. Một trong những bài toán trong đề là: Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB là tứ giác nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di chuyển trên tia Ct. Bằng cách phân tích và áp dụng kiến thức Toán học, học sinh sẽ có cơ hội rèn luyện kỹ năng tư duy logic, giải quyết vấn đề và phát triển khả năng suy luận.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thừa Thiên Huế
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, đi kèm lời giải chi tiết. Trong đề thi, có một bài toán thú vị: Đề cho hai vòi nước cùng chảy vào một bể không có nước, sau 5 giờ đầy bể. Nếu chỉ mở vòi thứ nhất trong 2 giờ rồi đóng lại, sau đó mở vòi thứ hai trong 1 giờ, ta được 1/4 bể nước. Bài toán đặt ra câu hỏi: nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? Để giải bài toán trên, ta cần sử dụng kiến thức về tỉ lệ cộng và động học. Qua việc phân tích và tính toán, ta sẽ xác định được thời gian mà mỗi vòi nước cần để chảy đầy bể. Bên cạnh đó, đề cũng có bài toán khác liên quan đến tam giác và hình trụ. Bài toán đưa ra các điều kiện và yêu cầu chứng minh một số tính chất của các hình học, đòi hỏi sự tỉ mỉ, logic và khéo léo trong suy luận. Đề thi tuyển sinh năm nay không chỉ đánh giá kiến thức mà còn khẳng định khả năng tư duy, sáng tạo và khả năng giải quyết vấn đề của thí sinh. Hy vọng bài thi sẽ giúp học sinh rèn luyện kỹ năng toán học và phát triển tư duy logic của mình.