Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Quang Trung - Bình Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Quang Trung, thành phố Quy Nhơn, tỉnh Bình Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Quang Trung – Bình Định : + Trên bảng ban đầu ghi số 2 và số 4. Ta thực hiện cách viết thêm các số lên bảng như sau: nếu trên bảng đã có hai số, giả sử là a b a b ta viết thêm lên bảng số có giá trị là a b ab. Hỏi với cách thực hiện như vậy, trên bảng có thể xuất hiện số 123456 được hay không? Giải thích. + Cho tam giác ABC, biết rằng 3 A 2 B 1800. Chứng minh: AB2 = BC2 + AB.AC. + Cho tam giác đều ABC có cạnh bằng a. Hai điểm M, N lần lượt di động trên hai đoạn thẳng AB AC AB AC sao cho AM AN 1. Chứng minh MN = a – x – y.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THCS năm 2021 – 2022 phòng GD&ĐT thành phố Sơn La; kỳ thi được diễn ra vào ngày 07 tháng 01 năm 2022.
Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.