Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Hưng Yên (chuyên)

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Hưng Yên (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Hưng Yên (chuyên) Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Hưng Yên (chuyên) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Hưng Yên (chuyên) là bài thi dành cho các thí sinh muốn vào các lớp chuyên Toán, chuyên Tin. Đề bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Một trong các câu hỏi trích dẫn trong đề tuyển sinh là: Cho hình vuông ABCD tâm O, cạnh a. M là điểm di động trên đoạn OB (M khác O và B). Vẽ đường tròn tâm I đi qua M và tiếp xúc với BC tại B, vẽ đường tròn tâm J đi qua M và tiếp xúc với CD tại D. Đường tròn (I) và đường tròn (J) cắt nhau tại điểm thứ hai là N. a) Chứng minh rằng 5 điểm A, N, B, C, D cùng thuộc một đường tròn. b) Chứng minh 3 điểm C, M, N thẳng hàng. Cùng với đó, đề còn đề cập đến nhiều bài toán khác, ví dụ: Cho tam giác MNP vuông cân tại M, MN = a. Lấy điểm D thuộc cạnh MN; điểm E thuộc cạnh NP sao cho chu vi tam giác NDE bằng 2a. Tìm giá trị lớn nhất của diện tích tam giác NDE. Cho a, b là các số dương thỏa mãn điều kiện (a + b)^3 + 4ab ≤ 12. Chứng minh rằng: 1/(1 + a) + 1/(1 + b) + 2020ab ≤ 2021. Đề tuyển sinh này đòi hỏi thí sinh cần có kiến thức vững chắc và khả năng giải quyết các bài toán phức tạp. Hy vọng các thí sinh sẽ tự tin và thành công trong kỳ thi tuyển sinh này!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Lạng Sơn
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề), đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. + Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. + Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm lần lượt là 10101 điểm đã cho và bán kính đều bằng √2 cm. Hỏi có hay không 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm? Tại sao?
Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 - 2021 sở GDĐT Hà Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho hàm số y = ax2 (a khác 0) có đồ thị là parabol như hình vẽ. Xác định hệ số a. + Cho phương trình 12×2 = x + m2 (với m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p320 − x32. + Cho đường tròn (O), đường kính AB cố định. Điểm H cố định nằm giữa hai điểm A và O sao cho AH < OH. Kẻ dây cung MN vuông góc với AB tại H. Gọi C là điểm tùy thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. 1. Chứng minh tứ giác BCKH nội tiếp. 2. Chứng minh tam giac AMK đồng dạng với tam giác ACM. 3. Cho độ dài đoạn thẳng AH = a. Tính AK.AC − HA.HB theo a . 4. Gọi I là tâm đường tròn ngoại tiếp tam giác MKC. Xác định vị vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Tìm giá trị của tham số m để hàm số y = (m − 1) x + m2 nghịch biến trên R và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 − 2(m − 1)x + 2m − 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1; x2. Tìm giá trị của tham số m để x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2×2 − 8x + 62 = (x − 1)y2 + x2 − 6x + 5.