Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 3 lớp 12 môn Toán năm 2018 2019 trường Triệu Thái Vĩnh Phúc

Nội dung Đề thi KSCL lần 3 lớp 12 môn Toán năm 2018 2019 trường Triệu Thái Vĩnh Phúc Bản PDF Vừa qua, trường THPT Triệu Thái (Lập Thạch, Vĩnh Phúc) đã tổ chức kỳ thi khảo sát chất lượng lần 3 môn Toán lớp 12 năm học 2018 – 2019, kỳ thi nhằm tạo điều kiện để các em học sinh khối 12 của nhà trường được tiếp tục rèn luyện và củng cố các kiến thức Toán THPT, để các em có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL lần 3 Toán lớp 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc có mã đề 132 gồm 06 trang, đề được soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm bài thi KSCL Toán lớp 12 trong thời gian 90 phút. [ads] Trích dẫn đề thi KSCL lần 3 Toán lớp 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc : + Mảnh vườn nhà ông An có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Ông dùng 2 đường Parabol có đỉnh là tâm đối xứng của elip cắt elip tại 4 điểm M, N, P, Q như hình vẽ sao cho tứ giác MNPQ là hình chữ nhật có MN = 4 để chia vườn. Phần tô đậm dùng để trồng hoa và phần còn lại để trồng rau. Biết chi phí trồng hoa là 600.000 đồng/m2 và trồng rau là 50.000 đồng/m2. Hỏi số tiền phải chi gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 4m. + Trong kỳ thi chọn học sinh giỏi tỉnh Vĩnh Phúc có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6.t^2 với t ( giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi vật bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề khảo sát chất lượng Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng Toán 12 năm 2021 - 2022 trường Đại học Hồng Đức - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?