Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình đường thẳng và một số bài toán liên quan

Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).

Nguồn: toanmath.com

Đọc Sách

Chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 304 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ chỉ phương của đường thẳng. DẠNG 2 Viết phương trình đường thẳng. DẠNG 3 Tìm tọa độ điểm liên quan đến đường thẳng. DẠNG 4 Góc giữa đường thẳng và mặt phẳng, giữa hai đường thẳng. DẠNG 5 Khoảng cách từ điểm đến đường thẳng, giữa hai đường thẳng. DẠNG 6 Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. DẠNG 7 Bài toán liên quan đến đường thẳng – mặt phẳng – mặt cầu. DẠNG 8 Điểm thuộc đường thẳng. DẠNG 9 Phương trình đường thẳng liên quan đến góc và khoảng cách. DẠNG 10 Hình chiếu và bài toán cực trị. DẠNG 11 Phương trình đường thẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 262 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ pháp tuyến của mặt phẳng. DẠNG 2 Viết phương trình mặt phẳng dùng đường thẳng. DẠNG 3 Vị trí tương đối giữa hai mặt phẳng. DẠNG 4 Tìm tọa độ điểm liên quan đến mặt phẳng. DẠNG 5 Khoảng cách từ một điểm để một mặt phẳng. DẠNG 6 Ví trị tương đối giữa mặt cầu và mặt phẳng. DẠNG 7 Viết phương trình mặt cầu liên quan đến mặt phẳng. DẠNG 8 Điểm thuộc mặt phẳng. DẠNG 9 Phương trình mặt phẳng không dùng đường thẳng. DẠNG 10 Phương trình theo đoạn chắn. DẠNG 11 Hình chiếu của điểm lên mặt phẳng. DẠNG 12.1 Các bài toán cực trị phần 1. DẠNG 12.2 Các bài toán cực trị phần 2. DẠNG 13 Các bài toán liên quan đến góc. DẠNG 14 Phương trình mặt phẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hệ trục tọa độ Oxyz ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Điểm và vecto trong hệ trục tọa độ. DẠNG 2 Tích vô hướng và ứng dụng. DẠNG 3 Mặt cầu trong không gian. DẠNG 4 Cực trị liên quan đến hệ trục tọa độ. DẠNG 5 Hệ trục tọa độ trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán cực trị tọa độ không gian Oxyz
Tài liệu gồm 47 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị tọa độ không gian Oxyz, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Tìm điểm M thuộc (P) sao cho u aMA bMB cMC có u đạt min. Dạng 2: Tìm điểm M thuộc (P) sao cho 222 T aMA bMB cMC đạt max hoặc min. Dạng 3: Tìm điểm M thuộc (P) sao cho MA MB min hoặc MA MB max. Dạng 4: Bài toán lập phương trình mặt phẳng, đường thẳng có yếu tố cực trị. Dạng 5: Bài toán tìm điểm M thuộc đường thẳng có yếu tố cực trị. Dạng 6: Một số bài toán cực trị khoảng cách liên quan đến mặt cầu. Dạng 7: Bài toán cực trị liên quan đến góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.