Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Lê Hồ Quang Minh

Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Lê Hồ Quang Minh, hướng dẫn học sinh khối 12 tự học chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, thuộc chương trình Giải tích 12 chương 2 và ôn thi tốt nghiệp THPT môn Toán. Chủ đề 1 . LUỸ THỪA VÀ HÀM SỐ LUỸ THỪA. Vấn đề 1. LUỸ THỪA. VÍ DỤ MINH HOẠ. Vấn đề 2. HÀM SỐ LUỸ THỪA. VÍ DỤ MINH HOẠ. Dạng 1. Tìm tập xác định của hàm số luỹ thừa. Dạng 2. Đạo hàm và đồ thị của hàm số luỹ thừa. BÀI TẬP RÈN LUYỆN. Bài tập rèn luyện vấn đề 1. Bài tập rèn luyện vấn đề 2. Chủ đề 2 . LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Tìm điều kiện xác định của biểu thức logarit. Dạng 2. Rút gọn và tính giá trị biểu thức logarit. Dạng 3. Biểu diễn logarit theo các logarit đã biết. BÀI TẬP RÈN LUYỆN. Dạng 1. Tìm điều kiện xác định của biểu thức logarit. Dạng 2. Rút gọn và tính giá trị biểu thức logarit. Dạng 3. Biểu diễn logarit theo các logarit đã biết. Chủ đề 3 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Tìm tập xác định của hàm số logarit. Dạng 2. Đạo hàm và đồ thị của hàm số mũ – logarit. Dạng 3. Các bài toán thực tế về hàm số mũ. Dạng 4. Cực trị hàm số mũ – logarit và min max hàm nhiều biến. BÀI TẬP RÈN LUYỆN. Dạng 1. Tìm tập xác định của hàm số logarit. Dạng 2. Đạo hàm và đồ thị của hàm số mũ – logarit. Dạng 3. Các bài toán thực tế về hàm số mũ. Dạng 4. Cực trị hàm số mũ – logarit và min max hàm nhiều biến. Cực trị của hàm số mũ và hàm số logarit. Giá trị lớn nhất và nhỏ nhất của hàm số mũ và logarit. Chủ đề 4 . PHƯƠNG TRÌNH MŨ – LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Phương trình mũ không chứa tham số. Dạng 2. Phương trình logarit không chứa tham số. Dạng 3. Phương trình mũ – logarit chứa tham số. BÀI TẬP RÈN LUYỆN. Dạng 1. Phương trình mũ không chứa tham số. Dạng 2. Phương trình logarit không chứa tham số. Dạng 3. Phương trình mũ – logarit chứa tham số. Chủ đề 5 . BẤT PHƯƠNG TRÌNH MŨ – LOGARIT. VÍ DỤ MINH HOẠ. Dạng 1. Bất phương trình mũ không chứa tham số. Dạng 2. Bất phương trình logarit không chứa tham số. Dạng 3. Bất phương trình mũ – logarit chứa tham số. BÀI TẬP RÈN LUYỆN. Dạng 1. Bất phương trình mũ không chứa tham số. Dạng 2. Bất phương trình logarit không chứa tham số. Dạng 3. Bất phương trình mũ – logarit chứa tham số.

Nguồn: toanmath.com

Đọc Sách

Phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình và bất phương trình mũ – logarit chứa tham số, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Bài toán 1. Tìm tham số m để f(x;m) = 0 có nghiệm (hoặc có k nghiệm) trên miền D. 2. Bài toán 2. Tìm tham số m để f(x;m) ≥ 0 hoặc f(x;m) ≤ 0 có nghiệm trên D. 3. Một số phương pháp áp dụng trong bài toán. a. Phương pháp đặt ẩn phụ. b. Phương pháp hàm số. c. Dấu của tam thức bậc hai. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập phương trình, bất phương trình, hệ phương trình mũ - logarit vận dụng cao
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập phương trình, bất phương trình, hệ phương trình mũ – logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao, phân loại phương trình, bất phương trình, hệ mũ – logarit: + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p1. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p2. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p3. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p4. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p5. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p6. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p7. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p8. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p9. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p10. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p11. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p12. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p13. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p14. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p15. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p16. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p17. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p18. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p19. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p20. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p21. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p22. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p23. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p24. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p25. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p26. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p27. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p28. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p29. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p30. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p31. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p32. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p33. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p34. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p35. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p36. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p37. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p38. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p39. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p40. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p41. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p42. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p43. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p44. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p45. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p46. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p47. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p48. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p49. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p50. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p51. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p52. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p53. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p54. + Lớp bài toán PT – BPT – HPT mũ – logarit vận dụng cao p55.
Toàn tập cực trị mũ, logarit vận dụng cao
Tài liệu gồm 38 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tổng hợp toàn tập cực trị mũ, logarit vận dụng cao (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Vận dụng cao cực trị siêu việt (mũ, logarit). + Cực trị siêu việt p1. + Cực trị siêu việt p2. + Cực trị siêu việt p3. + Cực trị siêu việt p4. + Cực trị siêu việt p5. + Cực trị siêu việt p6. + Cực trị siêu việt p7. + Cực trị siêu việt p8. + Cực trị siêu việt p9. + Cực trị siêu việt p10. + Cực trị siêu việt p11. + Cực trị siêu việt p12. + Cực trị siêu việt p13. + Cực trị siêu việt p14. + Cực trị siêu việt p15. + Cực trị siêu việt p16. + Cực trị siêu việt p17. + Cực trị siêu việt p18. + Cực trị siêu việt p19.
Toàn tập lũy thừa, mũ và logarit cơ bản
Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức, tổng hợp toàn tập lũy thừa, mũ và logarit cơ bản (phiên bản năm 2021) nằm trong hệ thống bài tập trắc nghiệm chuyên đề lũy thừa, mũ và logarit lớp 12 THPT. Cơ bản hàm số lũy thừa. + Cơ bản hàm số lũy thừa – p1. + Cơ bản hàm số lũy thừa – p2. + Cơ bản hàm số lũy thừa – p3. + Cơ bản hàm số lũy thừa – p4. + Cơ bản hàm số lũy thừa – p5. + Cơ bản hàm số lũy thừa – p6. + Cơ bản hàm số lũy thừa – p7. Cơ bản hàm số mũ. + Cơ bản hàm số mũ – p1. + Cơ bản hàm số mũ – p2. + Cơ bản hàm số mũ – p3. + Cơ bản hàm số mũ – p4. + Cơ bản hàm số mũ – p5. + Cơ bản hàm số mũ – p6. + Cơ bản hàm số mũ – p7. Cơ bản hàm số logarit. + Cơ bản hàm số logarit – p1. + Cơ bản hàm số logarit – p2. + Cơ bản hàm số logarit – p3. + Cơ bản hàm số logarit – p4. + Cơ bản hàm số logarit – p5. + Cơ bản hàm số logarit – p6. + Cơ bản hàm số logarit – p7. Cơ bản phương trình, bất phương trình mũ. + Cơ bản phương trình, bất phương trình mũ – p1. + Cơ bản phương trình, bất phương trình mũ – p2. + Cơ bản phương trình, bất phương trình mũ – p3. + Cơ bản phương trình, bất phương trình mũ – p4. + Cơ bản phương trình, bất phương trình mũ – p5. + Cơ bản phương trình, bất phương trình mũ – p6. + Cơ bản phương trình, bất phương trình mũ – p7. + Cơ bản phương trình, bất phương trình mũ – p8. + Cơ bản phương trình, bất phương trình mũ – p9. + Cơ bản phương trình, bất phương trình mũ – p10. Cơ bản phương trình, bất phương trình logarit. + Cơ bản phương trình, bất phương trình logarit – p1. + Cơ bản phương trình, bất phương trình logarit – p2. + Cơ bản phương trình, bất phương trình logarit – p3. + Cơ bản phương trình, bất phương trình logarit – p4. + Cơ bản phương trình, bất phương trình logarit – p5. + Cơ bản phương trình, bất phương trình logarit – p6. + Cơ bản phương trình, bất phương trình logarit – p7. + Cơ bản phương trình, bất phương trình logarit – p8. + Cơ bản phương trình, bất phương trình logarit – p9. Bài tập tổng hợp lũy thừa, mũ, logarit. + Bài tập tổng hợp – p1. + Bài tập tổng hợp – p2 . + Bài tập tổng hợp – p3 . + Bài tập tổng hợp – p4 . + Bài tập tổng hợp – p5 . + Bài tập tổng hợp – p6 . + Bài tập tổng hợp – p7 . + Bài tập tổng hợp – p8 . + Bài tập tổng hợp – p9 . + Bài tập tổng hợp – p10 . + Bài tập tổng hợp – p11 . + Bài tập tổng hợp – p12 . + Bài tập tổng hợp – p13 . + Bài tập tổng hợp – p14 . + Bài tập tổng hợp – p15 . + Bài tập tổng hợp – p16 . + Bài tập tổng hợp – p17 . + Bài tập tổng hợp – p18 . + Bài tập tổng hợp – p19 . + Bài tập tổng hợp – p20.