Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán về biểu thức đại số

Nhằm đáp ứng nhu cầu của giáo viên Toán THCS và học sinh về các chuyên đề môn Toán lớp 7, THCS. giới thiệu đến thầy cô và các em chuyên đề các bài toán về biểu thức đại số. Chuyên đề gồm 116 trang được biên soạn bởi tác giả Trịnh Bình, được tham khảo qua nhiều tài liệu tương tự, nhằm đáp ứng nhu cầu về tài liệu hay và cập nhật được các dạng toán mới về biểu thức đại số thường được ra trong các kì thi gần đây. Khái quát nội dung tài liệu các dạng toán về biểu thức đại số: Chủ đề 1 . Rút gọn phân thức hữu tỉ. + Dạng toán 1: Rút gọn biểu thức hữu tỉ. + Dạng toán 2: Rút gọn biểu thức hữu tỉ và bài toán liên quan. + Dạng toán 3: Rút gọn biểu thức có tính quy luật. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 2 . Tính giá trị biểu thức một biến. + Dạng toán 1: Tính giá trị biểu thức chứa đa thức. + Dạng toán 2: Tính giá trị biểu thức chứa căn thức. + Dạng toán 3: Tính giá trị biểu thức có biến là nghiệm của phương trình. Bài tập vận dụng. Hướng dẫn giải. [ads] Chủ đề 3 . Tính giá trị biểu thức nhiều biến có điều kiện. + Dạng toán 1: Sử dụng phương pháp phân tích. + Dạng toán 2: Sử dụng phương pháp hệ số bất định. + Dạng toán 3: Sử dụng phương pháp hình học. + Dạng toán 4: Sử dụng & vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 4 . Một số phương pháp chứng minh đẳng thức. + Dạng toán 1: Sử dụng phép biến đổi thương đương. + Dạng toán 2: Sử dụng hằng đẳng thức quen biết. + Dạng toán 3: Sử dụng phương pháp đổi biến. + Dạng toán 4: Sử dụng bất đẳng thức. + Dạng toán 5: Sử dụng lượng liên hợp. + Dạng toán 6: Chứng minh có một số bằng hằng số cho trước. + Dạng toán 7: Sử dụng & Vận dụng tính chất của dãy tỉ số bằng nhau. Bài tập vận dụng. Hướng dẫn giải. Chủ đề 5 . Rút gọn biểu thức đại số và bài toán liên quan. + Dạng toán 1: Các bài toán biến đổi căn thức thường gặp. + Dạng toán 2: Sử dụng ẩn phụ để đơn giản hóa bài toán. + Dạng toán 3: Các bài toán về tổng dãy có quy luật. + Dạng toán 4: Rút gọn biểu thức chứa căn có một hoặc nhiều ẩn. + Dạng toán 5: Rút gọn biểu thức và bài toán liên quan. Bài tập vận dụng. Hướng dẫn giải.

Nguồn: toanmath.com

Đọc Sách

200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Tài liệu gồm 185 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 200 bài tập rút gọn biểu thức và bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán: + Cho biểu thức A và B. a) Tính giá trị biểu thức B khi x = 25. b) Biết P = B : A. Chứng minh rằng: P. c) Tìm giá trị nguyên của x để P nhận giá trị nguyên. + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của x để A = 4/5. c) Tìm giá trị lớn nhất của biểu thức A. + Cho hai biểu thức A và B với x >= 0 và x khác 1. a) Tính giá trị của biểu thức A khi x = 4. b) Rút gọn biểu thức C = A + B. c) So sánh giá trị của biểu thức C với 1.
Tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán
Tài liệu gồm 567 trang, tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán, có đáp án / đáp số và lời giải chi tiết. Trích dẫn tài liệu tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán: + Cho đường tròn (O) và đường kính AB R cm 2 10. Gọi C là trung điểm OA. Qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ MB, H là giao điểm AK và MN. Chứng minh: a) Tứ giác BHCK nội tiếp, AMON là hình thoi. b) 2 AK AH R và tính diện tích hình quạt tao bởi OM, OB và cung MB. c) Trên KN lấy I sao cho KI KM, chứng minh NI KB. d) Tìm vị trí điểm K để chu vi tam giác MKB lớn nhất. + Cho nửa đường tròn (O;R) đường kính AB. Bán kính OC AB. Điểm E thuộc đoạn OC. Tia AE cắt nửa đường tròn (O) tại M. Tiếp tuyến của nửa đường tròn tại M cắt OC tại D. Chứng minh: a) Tứ giác OEMB nội tiếp và MDE cân. b) Gọi BM cắt OC tại K. Chứng minh BM BK không đổi khi E di chuyển trên OC và tìm vị trí của E để MA MB 2. c) Cho 0 ABE 30 tính S MOB và chứng minh khi E di chuyển trên OC thì tâm đường tròn ngoại tiếp CME thuộc một đường thẳng cố định. + Cho ABC đều nội tiếp (O;R) kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK AM tại K, BK cắt CM tại E, R cm 6. Chứng minh: a) Tứ giác ABHK nội tiếp và MBE cân. b) Tứ giác BOCD là hình thoi và gọi BE cắt (O) tại N và tính S MON. c) Tìm vị trí của M để chu vi MBE lớn nhất và tìm quỹ tích điểm E khi M di chuyển trên cung nhỏ AC.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 67 trang, được biên soạn bởi tác giả Nguyễn Nhất Huy (Tạp Chí Và Tư Liệu Toán Học), tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán, có lời giải chi tiết. Mục lục tài liệu tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán: 1 Các kiến thức cơ bản về bất đẳng thức. 1.1 Một số kí hiệu sử dụng trong tài liệu (Trang 2). 1.2 Bất đẳng thức AM – GM (Trang 2). 1.3 Bất đẳng thức Cauchy – Schwarz (Trang 2). 1.4 Điều kiện có nghiệm của phương trình (Trang 2). 2 Các bài toán bất đẳng thức trong các kì thi tuyển sinh vào lớp 10 chuyên Toán. 3 Giới thiệu một số phương pháp chứng minh bất đẳng thức khác. 3.1 Tam thức bậc hai và phương pháp miền giá trị (Trang 38). 3.2 Phương pháp đổi biến PQR và bất đẳng thức Schur (Trang 45). 3.3 Phân tích tổng bình phương SOS và phân tích Schus – SOS (Trang 51). 4 Các bài toán luyện tập.
Toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020
THCS. giới thiệu đến thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 do thầy Vũ Ngọc Thành tổng hợp, tài liệu gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020 thành các chuyên đề, có lời giải chi tiết. Các chuyên đề trong tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 gồm: + Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). + Chuyên đề 2: Bất đẳng thức – giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). + Chuyên đề 3: Phương trình (Trang 62). + Chuyên đề 4: Hệ phương trình (Trang 104). + Chuyên đề 5: Hàm số (Trang 131). + Chuyên đề 6: Giải bài toán bằng cách lập phương trình – hệ phương trình – bài toán thực tế (Trang 150). + Chuyên đề 7: Hình học (Trang 158). + Chuyên đề 8: Số học (Trang 262). + Chuyên đề 9: Biểu thức (Trang 304).