Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng môn Toán lớp 11 lần 1 năm học 2021 – 2022 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi có đáp án mã đề Mã 132 Mã 209 Mã 357 Mã 485 Mã 570 Mã 628 Mã 743 Mã 896. Đề kiểm tra chất lượng Toán lớp 11 lần 1 năm 2021 – 2022 trường Hàn Thuyên – Bắc Ninh : + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có đúng 3 người biết cả tiếng Anh và tiếng Pháp? + Cho tứ diện ABCD có tất cả các cạnh bằng 2 a. Trên cạnh CD BC lần lượt lấy các điểm N M sao cho 2 1 3 2 CN MC CD MB. Trên trung tuyến AH của tam giác ABD lấy điểm P sao cho 4 5 PA PH. Diện tích thiết diện khi cắt tứ diện ABCD bởi mặt phẳng MNP là? + Cho tứ diện ABCD có AB CD 6 8. Cắt tứ diện bởi một mặt phẳng song song với AB CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng? + Công thức nào dưới đây ĐÚNG về giá trị lượng giác của góc lượng giác? Giả sử các điều kiện xác định được thỏa mãn? + Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Tìm xác suất của biến cố A: “3 viên bi lấy ra đều màu đỏ”.

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCL Toán 11 lần 1 năm học 2018 - 2019 trường Tiên Du 1 - Bắc Ninh
Đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh mã đề 201 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 và thúc đẩy các em không ngừng rèn luyện nâng cao kiến thức môn Toán, đề thi có đáp án các mã đề 201 → 208. Trích dẫn đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh : + Cho tập A gồm n phần tử (n ≥ k ≥ 1, k, n thuộc N). Mỗi kết quả của việc lấy ra k phần tử khác nhau của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là: A. Một tổ hợp chập k của n phần tử. B. Một chỉnh hợp chập n của k phần tử. C. Một chỉnh hợp chập k của n phần tử. D. Một hoán vị của k phần tử. + Cho một đa giác đều gồm 2n đỉnh (n ≥ 2, n thuộc N). Chọn ngẫu nhiên 3 đỉnh trong 2n đỉnh của đa giác. Biết xác suất 3 đỉnh được chọn tạo thành một tam giác vuông là 1/5. Trong các mệnh đề sau, mệnh đề nào đúng? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt. B. Tồn tại bốn điểm không cùng thuộc một mặt phẳng. C. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa. D. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B - Ninh Bình lần 1
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B – Ninh Bình lần 1 được biên soạn nhằm trang bị từ sớm cho các em học sinh khối 11 các kiến thức về kỳ thi THPT Quốc gia, đồng thời các em sẽ được rèn luyện từ sớm nhằm đạt được những kết quả tốt nhất cho kỳ thi THPTQG năm 2020, đề thi có mã đề 111 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài thi 90 phút, đề thi có đáp án các mã đề 111, 112, 113, 114. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B – Ninh Bình lần 1 : + Cho bốn điểm A; B; C; D không đồng phẳng. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD. Giao điểm của đường thẳng CD và mặt phẳng (MNP) là giao điểm của? [ads] + Cho đa giác đều (H) có 16 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H). + Cho hai cấp số cộng hữu hạn, mỗi cấp số có 100 số hạng là: 4; 7; 10; 13; 16 … và 1; 6; 11; 16; 21 … Có bao nhiêu số hạng có mặt trong cả hai dãy số trên?
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền - Hải Phòng lần 1
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 mã đề 134 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2018 nhằm trang bị từ sớm cho các em học sinh khối 11 những kiến thức về kỳ thi THPT Quốc gia môn Toán để các em làm quen, nắm bắt, xác định hướng học tập phù hợp … đề thi có đáp án các mã đề 134, 245, 356, 467, 578, 689, 790, 801. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 : + Trong các khẳng định sau , khẳng định nào đúng ? A. Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó. B. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, mặc dù không biết tập hợp tất cả các kết quả có thể có của phép thử đó. C. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, khi biết tập hợp tất cả các kết quả có thể có của phép thử đó. D. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AC, N là điểm thuộc cạnh AD sao cho AN = 2ND. O là một điểm thuộc miền trong của tam giác BCD. Khẳng định nào sau đây đúng? A. Mặt phẳng (OMN) chứa đường thẳng CD. B. Mặt phẳng (OMN) đi qua điểm A. C. Mặt phẳng (OMN) chứa đường thẳng AB. D. Mặt phẳng (OMN) đi qua giao điểm của hai đường thẳng MN và CD. + Trong kỳ thi THPT Quốc Gia môn Toán năm 2019, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 vị trí khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.
Đề khảo sát lần 2 Toán 11 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em đề khảo sát lần 2 Toán 11 năm học 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã 114 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi nhằm thúc đẩy học sinh khối 11 của trường không ngừng trau dồi kiến thức và kỹ năng giải toán, đề thi có đáp án. Trích dẫn đề khảo sát lần 2 Toán 11 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong các mênh đề sau, mệnh đề nào đúng? A. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. B. Hai đường thẳng chéo nhau thì không có điểm chung. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng phân biệt không song song thì chéo nhau. [ads] + Từ độ cao 10 mét, người ta thả một quả bóng xuống mặt đất. Biết rằng sau mỗi lần chạm mặt đất quả bóng sẽ nảy lên một độ cao bằng 1/2 độ cao lần nảy lên trước đó và lần đầu tiên chạm đất quả bóng nảy lên độ cao là 8 mét. Tính quãng đường quả bóng đi được kể từ lúc thả đến thời điểm quả bóng chạm đất lần thứ 10. + Cho hình chóp S.ABCD đáy là hình thang có AD // BC. M là điểm di động trong hình thang ABCD. Qua M kẻ các đường thẳng song song SA và SB lần lượt cắt các mặt (SBC) và (SAD) tại N và P. Cho SA = a, SB = b. Tìm giá trị lớn nhất của biểu thức T = MN^2.MP.