Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2)

Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) Bản PDF - Nội dung bài viết Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Sách "Chinh phục lớp 9 môn Toán" bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) là tài liệu hữu ích giúp các học sinh nắm vững kiến thức và phương pháp giải các dạng toán trong chương trình Toán lớp 9. Sách được tổ chức theo từng dạng toán và mỗi bài học đều bao gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh hiểu rõ về nội dung cần nắm được trong bài toán và chuẩn bị tinh thần đúng đắn cho quá trình học tập. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết các phương pháp giải các dạng toán cụ thể, giúp học sinh áp dụng linh hoạt và hiệu quả trong việc giải các bài tập. Các nội dung chính trong sách bao gồm: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn: Đề cập đến phương trình bậc nhất hai ẩn, giải hệ phương trình bậc nhất hai ẩn và cách giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn. + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn: Thảo luận về hàm số y = ax^2, phương trình bậc hai một ẩn, cách quy về phương trình bậc hai và phương pháp giải toán bằng lập phương trình. Với cách trình bày rõ ràng, dễ hiểu và sự tổ chức logic, sách Đại số Tập 2 chắc chắn sẽ giúp các học sinh tự tin và thành công trong việc học môn Toán ở cấp độ lớp 9.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề rút gọn biểu thức và các bài toán liên quan - Trần Đình Cư
Tài liệu gồm 32 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm kiến thức cần nắm, phân loại và phương pháp giải bài tập chuyên đề rút gọn biểu thức và các bài toán liên quan, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số và ôn thi tuyển sinh vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NẮM B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Rút gọn biểu thức không chứa biến. Dạng 2: Tìm điều kiện xác định của biểu thức. Dạng 3: Rút gọn biểu thức chứa biến. Dạng 4: Rút gọn biểu thức, biết biến thỏa mãn điều kiện cho trước. Dạng 5: Các bài toán tổng hợp bao gồm các câu hỏi phụ. Dạng 6: Bài tập chinh phục điểm 10.
Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông (Toán 9 phần Hình học), có đáp án và lời giải chi tiết. Trích dẫn tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông : + Một người thợ sử dụng thước ngắm có góc vuông để đo chiều cao một cây dừa, với các kích thước đo được như hình bên. Khoảng cách từ góc cây đến chân người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người nhắm là 1,6m. Hỏi với các kích thước trên, người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). + Muốn tính khoảng cách từ điểm A đến điểm B bên kia bờ sông, ông Việt vạch một đường vuông góc với AB. Trên đường vuông góc này lấy một đoạn thẳng AC = 30m, rồi vạch CD vuông góc với phương BC cắt AB tại D (xem hình vẽ). Đo AD = 20m, từ đó ông Việt tính được khoảng cách từ A đến B. Em hãy tính độ dài AB và số đo góc ACB. + Một cây cao có chiều cao 6m. Để hái một buồng cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Một máy bay đang bay ở độ cao 12 km. Khi bay hạ cánh xuống mặt đất, đường đi của máy bay tạo một góc nghiêng so với mặt đất. a) Nếu cách sân bay 320 km máy bay bắt đầu hạ cánh thì góc nghiêng là bao nhiêu (làm tròn đến phút)? b) Nếu phi công muốn tạo góc nghiêng 5 thì cách sân bay bao nhiêu kilômét phải bắt đầu cho máy bay hạ cánh (làm tròn đến chữ số thập phân thứ nhất)? + Trường bạn An có một chiếc thang dài 6 m. Cần đặt chân thang cách chân tường một khoảng cách bằng bao nhiêu để nó tạo với mặt đất một góc “an toàn” là 65 (tức là đảm bảo thang không bị đổ khi sử dụng).
Hệ thức lượng trong tam giác vuông - Lương Anh Nhật
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Lương Anh Nhật, trình bày lý thuyết, các ví dụ minh họa và bài tập chuyên đề hệ thức lượng trong tam giác vuông (Toán 9 phần Hình học). CHƯƠNG I : HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. BÀI 1: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. I. Đặt vấn đề. II. Một số hệ thức về cạnh và đường cao trong tam giác. BÀI 2: TỶ SỐ LƯỢNG GIÁC CỦA MỘT GÓC NHỌN. I. Khái niệm tỷ số lượng giác của một góc nhọn. II. Tỷ số lượng giác của hai góc phụ nhau. III. Một số hệ thức cơ bản. IV. Bảng giá trị lượng giác của một số góc đặc biệt. BÀI 3: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG. I. Các hệ thức. II. Giải tam giác vuông. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG I. BÀI 1: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TỎNG TAM GIÁC VUÔNG. BÀI 2: TỶ SỐ LƯỢNG GIÁC CỦA MỘT GÓC NHỌN. BÀI 3: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG.
Chinh phục các dạng toán Đại số 9 - Lương Anh Nhật
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Anh Nhật, hướng dẫn phương pháp chinh phục các dạng toán Đại số 9. CHƯƠNG I. CĂN BẬC HAI – CĂN BẬC BA. BÀI 1: CĂN BẬC HAI. BÀI 2: BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. BÀI 3: GIẢI MỘT SỐ PHƯƠNG TRÌNH CHỨA CĂN THỨC THƯỜNG GẶP. BÀI 4: CĂN BẬC BA. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG I. CHƯƠNG II. HÀM SỐ BẬC NHẤT. BÀI 1: HÀM SỐ. BÀI 2: HÀM SỐ BẬC NHẤT. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG II. CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 1: PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 2: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 3: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG III.