Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán cấp trường lần 1 năm 2019 - 2020 trường Tiên Du 1 - Bắc Ninh

Nhằm tuyển chọn các em học sinh lớp 12 học giỏi môn Toán vào đội tuyển học sinh giỏi Toán của nhà trường, vừa qua, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi Toán cấp trường lần thứ nhất năm học 2019 – 2020. Đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh : + Cho hàm số y = x^3 + 2x^2 + x + 1 có đồ thị (C) và điểm M thuộc đồ thị (C) có hoành độ a. Gọi S là tập hợp tất cả các giá trị nguyên của a ∈ Z ∩ [-2020;2020] để tiếp tuyến tại M của (C) vuông góc với một tiếp tuyến khác của (C). Tìm số phần tử của S. + Cho hình vuông C1 có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (như hình vẽ). Từ hình vuông C2 lại tiếp tục làm như trên … ta nhận được dãy các hình vuông C1, C2, C3 … Cn, …. Gọi Si là diện tích của hình vuông Ci với i ∈ {1;2;3;…}. Đặt T = S1 + S2 + … + Sn + …. Biết T = 32/3, tính a? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy AD // BC. Gọi M là điểm thay đổi nằm trong hình thang ABCD. Từ M kẻ các đường thẳng song song với SA, SB lần lượt cắt các mặt phẳng (SBC) và (SAD) tại N và P. Biết diện tích tam giác SAB bằng S0 (không đổi). Tính giá trị lớn nhất của diện tích tam giác MNP theo S0 khi M là điểm thay đổi. + Trong không gian, cho tam giác đều ABC có cạnh bằng 11. Ba mặt cầu bán kính 3, 4 và 6 có tâm đặt lần lượt tại các đỉnh A, B và C của tam giác ABC. Có bao nhiêu mặt phẳng cùng tiếp xúc với cả ba mặt cầu đó? + Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Một thiết diện qua đỉnh tạo với đáy một góc 60 độ. Diện tích của thiết diện này bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2021 2022 sở GD ĐT TP Hồ Chí Minh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2021 – 2022 sở GD&ĐT TP Hồ Chí Minh : + Cho các hàm số có đồ thị lần lượt là (C1), (C2), (C3). Đường thẳng x = 1 cắt (C1), (C2), (C3) lần lượt tại các điểm M, N, P. Biết phưong trình tiếp tuyến của (C1) tại M và của (C2) tại N lần lượt là y = 2x + 3 và y = 202(10x + 1). Viết phương trình tiếp tuyến của (C3) tại P. + Cho tứ diện ABCD có AB = a; AC = a√7; DAB = DBC = 90°, ABC = 120°; góc giữa hai mặt phẳng (BCD) và (ABD) bằng 30°. a) Tính theo a thể tích của tứ diện ABCD. b) Tính theo a bán kính mặt cầu ngoại tiếp tứ diện ABCD. + Xét tập hợp X chọn ngẫu nhiên các số a b c X để được hàm số bậc ba y. Tính xác suất để hàm số này đạt cực trị tại x = 1.
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Cho 2021 tấm thẻ được đánh số theo thứ tự từ 1 đến 2021 (mỗi tấm thẻ được đánh duy nhất một số và không có hai thẻ nào có số giống nhau). Các tấm thẻ được úp xuống mặt bàn và không nhìn thấy số trên thẻ. Bốc ngẫu nhiên 1 tấm thẻ, tính xác xuất để số ghi trên tấm thẻ a) Chia hết cho cả 6 và 15. b) Chia hết cho 2, hoặc chia hết cho 3 hoặc chia hết cho 5. + Một cửa hàng bán quýt loại I với giá là 50.000 đồng/kg. Với giá bán này thì cửa hàng chỉ bán được khoảng 40kg mỗi ngày. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm 5000 đồng/kg thì số quýt bán được tăng thêm là 50kg. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập mỗi kg quýt ban đầu là 30.000 đồng? + Cho hàm số 2 2 1 x y x có đồ thị C. Cho d là tiếp tuyến của C tại điểm M x y 0 0 d cắt hai đường tiệm cận của C lần lượt tại A và B. Tính độ dài IA IB theo 0 x (I là giao điểm của hai đường tiệm cận) và tìm bán kính lớn nhất của đường tròn nội tiếp tam giác IAB.
Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB a AD b SA vuông góc với đáy và SA a 2. Gọi M là điểm nằm trên cạnh SA sao cho AM x 0 2 x a. a. Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng MBC theo a, b và x. b. Tìm x theo a để mặt phẳng MBC chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau. c. Trong trường hợp ABCD là hình vuông cạnh a, gọi K là điểm di động trên CD, H là hình chiếu của S lên BK. Tìm vị trí của điểm K trên CD để thể tích khối chóp S.ABH là lớn nhất. + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số sao cho số đó chia hết cho 7 và có chữ số hàng đơn vị bằng 1. + Trong không gian Oxyz, cho mặt cầu 2 2 2 Sx y z 1 4 8 và hai điểm A 3 0 0 B 4 2 1. Gọi M là một điểm bất kỳ thuộc mặt cầu S. Tìm giá trị nhỏ nhất của biểu thức MA MB 2.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.