Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hà Đông Hà Nội

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hà Đông Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra cuối kì 1 Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội Đề kiểm tra cuối kì 1 Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội Đề kiểm tra cuối kì 1 Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội bao gồm một trang với năm bài toán dạng tự luận, thời gian làm bài là 90 phút. Trong đó có các bài toán sau: 1. Với hàm số y = mx + 3 và hàm số y = -1/m.x + 3 (với m khác 0), học sinh được yêu cầu vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ và tìm tọa độ giao điểm của chúng khi m = 1. 2. Đối với đường tròn (O;R) và điểm A thuộc đường tròn, học sinh cần chứng minh các điều sau: - Bốn điểm A, O, I, M cùng thuộc một đường tròn - Trực tâm H của tam giác ABC đối xứng với điểm D qua trung điểm I - Tính độ dài của HA khi biết rằng tâm O cách đường thẳng d 2 cm. Đề kiểm tra này không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn khuyến khích họ áp dụng kiến thức đã học vào thực hành. Hãy cùng đối mặt và vượt qua thách thức này để phát triển và tiến bộ trong môn Toán nhé!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Đề kiểm tra HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề kiểm tra HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Đống Đa - Hà Nội
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 15 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bạc Liêu
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bạc Liêu gồm 1 trang với 5 bài toán tự luận, đề thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 9. Đề thi có lời giải chi tiết và thang điểm.