Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT

Tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT gồm có 283 trang hướng dẫn phương pháp giải nhanh một số dạng bài tập trắc nghiệm môn Toán thường gặp trong đề thi THPT Quốc gia môn Toán, rất hữu ích dành cho học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT QG. Các bài toán trong tài liệu được tác giả phân tích tỉ mỉ, đưa ra lời giải tự luận trước rồi mới giới thiệu một số “mẹo” giúp tìm nhanh đáp án, thông qua sự trợ giúp của máy tính cầm tay Casio / Vinacal … và một số công thức giải nhanh được thiết lập từ các bài toán tổng quát hóa. Khái quát nội dung tài liệu các phương pháp giải nhanh bài tập trắc nghiệm môn Toán THPT: Phần I . Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm quan hệ giữa tính đơn điệu và đạo hàm của hàm số. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm cực trị của hàm số. + Chủ đề 3. Các phương pháp giải bài tập trắc nghiệm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Chủ đề 4. Các phương pháp giải bài tập trắc nghiệm đường tiệm cận của đồ thị. + Chủ đề 5. Các phương pháp giải bài tập trắc nghiệm điểm uốn của đồ thị – phép tịnh tiến hệ tọa độ. + Chủ đề 6. Các phương pháp giải bài tập trắc nghiệm sự tương giao của hai đồ thị. + Chủ đề 7. Các phương pháp giải bài tập trắc nghiệm sự tiếp xúc của hai đồ thị. + Chủ đề 8. Các phương pháp giải bài tập trắc nghiệm tiếp tuyến của đồ thị. Phần II . Hàm số lũy thừa, hàm số mũ và hàm số logarit. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm hàm số mũ và hàm số logarit. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm phương trình mũ và phương trình logarit. [ads] Phần III . Nguyên hàm, tích phân và ứng dụng. + Chủ đề 1. Các phương pháp giải bài tập trắc nghiệm nguyên hàm. + Chủ đề 2. Các phương pháp giải bài tập trắc nghiệm tích phân. Phần IV . Số phức. + Chủ đề 1. Số phức và các phép toán. + Chủ đề 2. Căn bậc hai của số phức – phương trình bậc hai + Chủ đề 3. Dạng lượng giác của số phức và ứng dụng. Phần V . Phương pháp tọa độ trong không gian + Chủ đề 1. Hệ tọa độ trong không gian. + Chủ đề 2. Phương trình mặt phẳng. + Chủ đề 3. Phương trình đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Bí kíp Thế Lực 2016
Tài liệu Bí kíp Thế Lực 2016 bản đầy đủ được scan từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực, sách dày 216 trang bao gồm các kinh nghiệm giải toán của tác giả đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình – Oxy và Bất đẳng thức. Nội dung tài liệu : I. Bí kíp phương trình – bất phương trình 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill + Phương trình cho nghiệm đẹp + Phương trình cho nghiệm xấu + Đánh giá sau liên hợp, truy ngược dấu + Một số bài khó bấm máy – thường liên quan đến ẩn phụ 3. Advance Skill + Super Skill: Ép liên hợp + Pro Skill: Ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện [ads] III. Bí kíp Oxy 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng “=” 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện
Các chuyên đề luyện thi THPT Quốc gia môn Toán - Nguyễn Văn Lực
Tài liệu Các chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực gồm 372 trang. Tài liệu là hệ thống các bài tập được chọn lọc và giải chi tiết, phân loại theo từng chuyên đề.
Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt
Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.
Chuyên đề bài toán thực tế - Đoàn Văn Bộ
Tài liệu gồm 16 trang hướng dẫn phương pháp giải các bài toán thực tế thường gặp do tác giả Đoàn Văn Bộ biên soạn. Ý tưởng giải bài toán này là dựa vào phần kiến thức BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN và HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN mà rất nhiều giáo viên ở Trung học phổ thông đã bỏ qua, không dạy các em học sinh. Việc giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học với tên gọi là Quy hoạch tuyến tính. Tuy nhiên, đối với cấp bậc trung học phổ thông, ta chỉ xem xét và giải những bài toán đơn giản. Ngoài ra, tôi còn đề cập đến một số bài toán thực tế ở một số lý thuyết phần khác như: Đạo hàm, Khảo sát hàm số … Hy vọng qua chuyên đề này, khi các bạn gặp bài toán này trong đề thi THPT Quốc gia các bạn có thể làm được. [ads]