Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 bài toán thực tế liên quan đạo hàm - tích phân có lời giải

Tài liệu gồm 54 trang, tuyển chọn 50 bài toán thực tế liên quan đạo hàm – tích phân thường gặp trong đề thi thử THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết, giúp học sinh ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu 50 bài toán thực tế liên quan đạo hàm – tích phân có lời giải: + Một con kiến đậu ở đầu B của một thanh cứng mảnh AB có chiều dài L đang dựng cạnh một bức tường thẳng đứng (hình vẽ). Vào thời điểm mà đầu B bắt đầu chuyển động sang phải theo sàn ngang với vận tốc không đổi v thì con kiến bắt đầu bò dọc theo thanh với vận tốc không đổi u đối với thanh. Trong quá trình bò trên thanh, con kiến đạt được độ cao cực đại max h là bao nhiêu đối với sàn? Cho đầu A của thanh luôn tỳ lên tường thẳng đứng. + Từ một khúc gỗ tròn hình trụ có đường kính bằng 40 cm, cần xả thành một chiếc xà có tiết diện ngang là hình vuông và bốn miếng phụ được tô màu xám như hình vẽ dưới đây. Tìm chiều rộng x của miếng phụ để diện tích sử dụng theo tiết diện ngang là lớn nhất. + Một điểm C trên hòn đảo có khoảng cách ngắn nhất đến bờ biển là 60 km, B là điểm trên bờ biển sao cho CB vuông góc với bờ biển. Khoảng cách từ A trên bờ biển đến B là 100 km. Để tham dự buổi họp nhóm Strong Team Toán VD – VCD ngày 28/6/2019, thầy Quý phải tính toán vị trí diễn ra cuộc họp tại địa điểm G trên đoạn AB để tổng chi phí đi lại của cả hai nhóm các thầy cô là ít nhất. Biết nhóm của thầy Quý đi từ C theo đường biển chi phí đi là 500 nghìn mỗi km, nhóm cô Thêm đi từ vị trí A đi trên đất liền mỗi km chi phí là 300 nghìn. Hỏi thầy tìm được vị trí điểm G cách B bao xa?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đạo hàm Toán 11 KNTTVCS
Tài liệu gồm 142 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề đạo hàm trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTVCS), có đáp án và lời giải chi tiết. BÀI 31 . ĐỊNH NGHĨA VÀ Ý NGHĨA ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm tại một điểm. + Dạng 2. Đạo hàm của hàm số trên một khoảng. + Dạng 3. Ý nghĩa của đạo hàm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 32 . CÁC QUY TẮC TÍNH ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tính đạo hàm tại điểm. + Dạng 2. Tính đạo hàm của một số hàm số thường gặp. + Dạng 3. Bài toán tiếp tuyến. + Dạng 4. Bài toán quảng đường, vận tốc. + Dạng 5. Tính đạo hàm của hàm số mũ. + Dạng 6. Tính đạo hàm của hàm số logarit. BÀI 33 . ĐẠO HÀM CẤP HAI. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm cấp hai. + Dạng 2. Gia tốc. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM.
Chuyên đề đạo hàm Toán 11 CTST
Tài liệu gồm 140 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề đạo hàm trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm tại một điểm. + Dạng 2. Đạo hàm của hàm số trên một khoảng. + Dạng 3. Ý nghĩa của đạo hàm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 2 . CÁC QUY TẮC TÍNH ĐẠO HÀM. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính đạo hàm. + Dạng 2. Tính đạo hàm cấp hai. + Dạng 3. Gia tốc. + Dạng 4. Viết phương trình tiếp tuyến. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tính đạo hàm tại điểm. + Dạng 2. Tính đạo hàm của một số hàm số thường gặp. + Dạng 3. Bài toán tiếp tuyến. + Dạng 4. Bài toán quãng đường, vận tốc. + Dạng 5. Tính đạo hàm của hàm số mũ. + Dạng 6. Tính đạo hàm của hàm số lôgarit.
Bài giảng đạo hàm Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 72 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề đạo hàm trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 9 . ĐẠO HÀM 234. Bài 1 . ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM 234. A TRỌNG TÂM KIẾN THỨC 234. B MỘT SỐ DẠNG TOÁN THƯỜNG GẶP 236. + Dạng 1. Tính đạo hàm bằng định nghĩa 236. + Dạng 2. Hệ số góc và phương trình tiếp tuyến của đồ thị hàm số 237. C BÀI TẬP RÈN LUYỆN 238. D BÀI TẬP TRẮC NGHIỆM 242. Bài 2 . CÁC QUY TẮC TÍNH ĐẠO HÀM 253. A KIẾN THỨC TRỌNG TÂM 253. B CÁC DẠNG TOÁN THƯỜNG GẶP 257. + Dạng 1. Đạo hàm một số hàm thường gặp 257. + Dạng 2. Đạo hàm của hàm số lượng giác 259. + Dạng 3. Đạo hàm của hàm số mũ và hàm số lôgarit 259. + Dạng 4. Đạo hàm của tổng, hiệu, tích, thương của hai hàm số 260. + Dạng 5. Đạo hàm của hàm hợp 261. C BÀI TẬP RÈN LUYỆN 263. D BÀI TẬP TRẮC NGHIỆM 266. Bài 3 . ĐẠO HÀM CẤP HAI 274. A KIẾN THỨC TRỌNG TÂM 274. B CÁC DẠNG TOÁN THƯỜNG GẶP 275. + Dạng 1. Đạo hàm cấp hai 275. + Dạng 2. Toán thực tế 276. C BÀI TẬP RÈN LUYỆN 277. D BÀI TẬP TRẮC NGHIỆM 280. Bài 4 . ÔN TẬP CHƯƠNG IX 291. A BÀI TẬP TRẮC NGHIỆM 291. B BÀI TẬP TỰ LUẬN 295.
Bài giảng vi phân và đạo hàm cấp cao
Tài liệu gồm 20 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề vi phân và đạo hàm cấp cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 5: Đạo Hàm. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Trình bày được định nghĩa vi phân. + Trình bày được phương pháp tính gần đúng nhờ vi phân. + Trình bày được phương pháp tính đạo hàm cấp 2, cấp 3, …, cấp n. Kĩ năng: + Tính được vi phân của hàm số f(x) tại x0 cho trước. + Tìm vi phân của hàm số f(x). + Biết cách tính gần đúng một số dựa vào vi phân. + Biết tính đạo hàm cấp 2, cấp 3, …, cấp n. + Biết chứng minh được đẳng thức, bất đẳng thức, giải phương trình, bất phương trình liên quan đến đạo hàm cấp 2, cấp 3. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Tính vi phân. + Bài toán 1. Tìm vi phân của hàm số. + Bài toán 2. Tính gần đúng giá trị của hàm số. Dạng 2: Đạo hàm cấp cao. + Bài toán 1. Tính đạo hàm đến cấp n của hàm số. + Bài toán 2. Tính đạo hàm cấp cao của hàm số. + Bài toán 3. Chứng minh đẳng thức, bất đẳng thức, giải phương trình, bất phương trình. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.