Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2

Tài liệu gồm 213 trang được sưu tầm và biên soạn bởi thầy giáo Ths. Nguyễn Chín Em, phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2. Với mỗi câu hỏi và bài toán trong đề thi, tài liệu bổ sung thêm nhiều câu hỏi và bài toán tương tự, có đáp án và lời giải chi tiết. 50 dạng toán phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2: + Dạng toán 1. Hoán vị – Chỉnh hợp – Tổ hợp. + Dạng toán 2. Cấp số cộng. + Dạng toán 3. Phương trình Mũ – Logarits (phương trình mũ). + Dạng toán 4. Thể tích khối đa diện (Khối lập phương). + Dạng toán 5. Hàm số Mũ – Hàm số Logarits (hàm số Logarits). + Dạng toán 6. Nguyên hàm – Tích phân(Nguyên hàm). + Dạng toán 7. Thể tích khối đa diện (Khối chóp). + Dạng toán 8. Khối Nón – Trụ – Cầu (Công thức thể tích khối Nón). + Dạng toán 9. Khối Nón – Trụ – Cầu (Diện tích mặt cầu). + Dạng toán 10. Tính đơn điệu hàm số (Tìm khoảng đơn điệu khi biết bảng biến thiên). + Dạng toán 11. Logarits (Rút gọn biểu thức Logarits đơn giản). + Dạng toán 12. Khối Nón – Trụ – Cầu (Công thức diện tích xung quanh của trụ). + Dạng toán 13. Cực trị của hàm số (Tìm điểm cực trị khi biết bảng biến thiên). + Dạng toán 14. Khảo sát và vẽ đồ thị hàm số (Tìm hàm số khi biết đồ thị). + Dạng toán 15. Tiệm cận (Tìm tiệm cận ngang của hàm số). + Dạng toán 16. Bất phương trình Mũ – Logarits (Giải bất phương trình Logarit). + Dạng toán 17. Sự tương giao đồ thị (Đếm số nghiệm của phương trình khi biết đồ thị). + Dạng toán 18. Nguyên hàm – Tích phân (Tính tích phân dựa vào tính chất tích phân). + Dạng toán 19. Số phức (Tìm số phức liên hợp). + Dạng toán 20. Số phức (Tìm phần thực của tổng của hai số phức). + Dạng toán 21. Số phức (Tìm điểm biểu diễn của số phức). + Dạng toán 22. Hệ Oxyz (Tìm tọa độ hình chiếu của điểm lên mặt phẳng tọa độ). + Dạng toán 23. Hệ Oxyz (Tìm tọa độ tâm mặt cầu). + Dạng toán 24. Phương trình mặt phẳng (Tìm tọa đọ véc tơ pháp tuyến). + Dạng toán 25. Phương trình đường thẳng (Tìm tọa độ điểm thuộc đường thẳng đã cho). [ads] + Dạng toán 26. Quan hệ vuông góc trong không gian (Tìm góc giữa đường thẳng và mặt phẳng). + Dạng toán 27. Cực trị của hàm số (Tìm số điểm cực trị khi biết bảng biến thiên). + Dạng toán 28. GTLN và GTNN (Tìm GTLN – GTNN của hàm số trên đoạn). + Dạng toán 29. Logarits (Biểu diễn các tham số trong biểu thức Logarits đơn giản). + Dạng toán 30. Khảo sát và vẽ đồ thị hàm số (Tìm số giao điểm của đồ thị hàm số và trục hoành). + Dạng toán 31. Bất phương trình Mũ – Logarits (Giải Bphương trình Mũ). + Dạng toán 32. Mặt Nón – Trụ – Cầu (Tính diện tích xung quanh hình nón ). + Dạng toán 33. Nguyên hàm – Tích phân (Nhận dạng tích phân khi đổi biến). + Dạng toán 34. Ứng dụng tích phân (Tính diện tích hình phẳng). + Dạng toán 35. Số phức (Tìm phần ảo của tích hai số phức). + Dạng toán 36. Số phức (Phương trình bậc hai với hệ số thực). + Dạng toán 37. Phương trình đường thẳng trong Oxyz (Tổng hợp liên quan đường thẳng và mặt phẳng). + Dạng toán 38. Phương trình đường thẳng trong Oxyz (Lập phương trình đồ thị qua hai điểm). + Dạng toán 39. Tổ hợp – Xác suất (Tính xác suất biến cố). + Dạng toán 40. Khoảng cách (Khoảng cách giữa hai đường thẳng chéo nhau). + Dạng toán 41. Tính đơn điệu của hàm số (Tìm m để hàm số đồng biến trên R). + Dạng toán 42. Hàm số Mũ – Hàm số Logarits (Bài toán thực tế). + Dạng toán 43. Khảo sát và vẽ đồ thị hàm số (Nhận dạng các hệ số của hàm phân thức khi biết bảng biến thiên). + Dạng toán 44. Khối Nón – Trụ – Cầu (Bài toán thực tế tính thể tích của khối trụ). + Dạng toán 45. Nguyên hàm – Tích Phân (Tính tích phân hàm ẩn). + Dạng toán 46. Khảo sát và vẽ đồ thị hàm số (Tìm số nghiệm của phương trình liên quan đến sinx khi biết bảng biến thiên). + Dạng toán 47. Hàm số Mũ – Logarits (Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào biểu thức mũ – logarits). + Dạng toán 48. GTLN – GTNN (Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn). + Dạng toán 49. Thể tích khối đa diện (Thể tích khối đa diện cắt ra từ một khối khác). + Dạng toán 50. Phương trình Mũ – Logarits (Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình Logarits chứa hai ẩn).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán
Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.
Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.
Tuyển tập VD - VDC trong các đề thi thử THPT QG môn Toán - Trương Công Đạt
Tài liệu gồm 79 trang, được biên soạn bởi thầy giáo Trương Công Đạt, tuyển tập 420 câu vận dụng – vận dụng cao (VD – VDC) trong các đề thi thử tốt nghiệp THPT Quốc gia môn Toán, giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT, kỳ thi xét tuyển vào Đại học – Cao đẳng. Mục lục : CHƯƠNG I. HÀM SỐ 2. A. CÂU HỎI 3. B. ĐÁP ÁN TRẮC NGHIỆM 37. CHƯƠNG II. NGUYÊN HÀM – TÍCH PHÂN 38. A. CÂU HỎI 39. B. ĐÁP ÁN TRẮC NGHIỆM 53. CHƯƠNG III. HÌNH HỌC KHÔNG GIAN 54. A. CÂU HỎI 55. B. ĐÁP ÁN TRẮC NGHIỆM 68. CHƯƠNG IV. SỐ PHỨC 69. A. CÂU HỎI 70. B. ĐÁP ÁN TRẮC NGHIỆM 79.
Tuyển chọn 200 bài toán VD - VDC từ các đề thi thử tốt nghiệp THPT môn Toán
Tài liệu gồm 174 trang, được biên soạn bởi tác giả Trương Công Đạt, tuyển chọn 200 bài toán mức độ vận dụng – vận dụng cao (viết tắt: VD – VDC) từ các đề thi thử tốt nghiệp THPT môn Toán của các trường và sở GD&ĐT trên toàn quốc, có đáp án và lời giải chi tiết; lời giải các bài toán được trình bày theo nhiều cách: phương pháp tự luận, phương pháp giải nhanh trắc nghiệm, phương pháp sử dụng máy tính cầm tay Casio / Vinacal. Trích dẫn tài liệu tuyển chọn 200 bài toán VD – VDC từ các đề thi thử tốt nghiệp THPT môn Toán: + Cho hàm số f(x) là hàm đa thức bậc 3 và có đồ thị như hình vẽ. Xét hàm số g(x) = f(2×3 + x − 1) + m. Với giá trị nào của m thì giá trị nhỏ nhất của g(x) trên đoạn [0;1] bằng 2022? + Trong không gian cho hai điểm I (2;3;3) và J (4;−1;1). Xét khối trụ (T) có hai đường tròn đáy nằm trên mặt cầu đường kính IJ và có hai tâm nằm trên đường thẳng IJ. Khi có thể tích (T) lớn nhất thì hai mặt phẳng chứa hai đường tròn đáy của (T) có phương trình dạng x + by + cz + d1 = 0 và x + by + cz + d2 = 0. Giá trị của d21 + d22 bằng? + Trên tập hợp các số phức, xét phương trình z2 − 2z − m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2√2 với C(−1;1). Tổng các phần tử trong T bằng?