Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai

Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp tỉnh môn Toán năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho dãy số (un) xác định bởi u1 = 3 và n.u_n+1 = 2(n + 1)un – n – 2 với mọi n >= 1. a) Chứng minh rằng mọi số hạng của dãy đều là số nguyên. b) Chứng minh rằng với p là số nguyên tố lẻ bất kỳ, luôn tồn tại hai số hạng liên tiếp của dãy là bội của p. + Cho tam giác ABC nhọn, có AB < BC, nội tiếp đường tròn (O), hai đường cao AE và CF cắt nhau tại H (với E thuộc BC, F thuộc AB). Gọi M là trung điểm của cạnh AC. Tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại Z. Gọi X là giao điểm của ZA và EF, Y là giao điểm của ZC và EF. Đường tròn ngoại tiếp tam giác BEF cắt đường tròn (O) tại điểm D (D khác B). a) Chứng minh rằng ba điểm M, H và D thẳng hàng. b) Chứng minh rằng bốn điểm D, X, Z và Y cùng nằm trên một đường tròn. + Trong một tòa nhà có một số phòng nào đó, trong mỗi phòng có một bóng đèn và một công tắc, công tắc ở mỗi phòng được nối với một số phòng nào đó. Khi ta bấm công tắc tại một phòng thì sẽ làm thay đổi trạng thái của bóng đèn trong phòng đó và các phòng được nối với công tắc này (bóng đang sáng sẽ tắt còn bóng đang tắt sẽ sáng). Chứng minh rằng, nếu ban đầu tất cả các bóng đèn đều tắt thì sau một số hữu hạn lần bấm công tắt sẽ làm cho tất cả các bóng đèn đều sáng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 năm 2017 - 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG Toán 12 năm học 2017 - 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Đề thi HSG Toán 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?