Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2021 - 2022 trường THPT Phan Huy Chú - Hà Nội

Đề thi thử Toán tuyển sinh vào lớp 10 năm học 2021 – 2022 trường THPT Phan Huy Chú, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào 10 năm 2021 – 2022 trường THPT Phan Huy Chú – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai xe ô tô đi từ Hà Nội đến Hải Phòng, xe thứ hai đến sớm hơn xe thứ nhất là 30 phút. Lúc trở về xe thứ nhất tăng vận tốc thêm 12 km mỗi giờ, xe thứ hai vẫn giữ nguyên vận tốc nhưng có dừng lại nghỉ ở Hải Dương hết 10 phút, sau đó về đến Hà Nội cùng lúc với xe thứ nhất. Tìm vận tốc ban đầu của mỗi xe, biết chiều dài quãng đường từ Hà Nội đến Hải phòng là 120 km và khi đi hay về hai xe đều xuất phát cùng một lúc. + Một kiến trúc sư muốn xây dựng một ngôi nhà kính có hình dạng gồm một hình hộp chữ nhật ở đáy và một nửa hình trụ ở trên. Biết hình hộp chữ nhật có kích thước là 8 x 3 x 2 m như hình vẽ. Tính thể tích của nhà kính này. + Cho tam giác vuông ABC tại C nội tiếp trong đường tròn tâm O. Trên cung nhỏ BC lấy điểm D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từ C đến AB (H thuộc AB) và E là giao điểm của CH với AD. 1) Chứng minh tứ giác BDEH là tứ giác nội tiếp. 2) Chứng minh AE.AD = AH.AB, từ đó suy ra: AB2 = AE.AD + BH.BA. 3) Đường thẳng qua E song song với AB, cắt BC tại F. Chứng minh CD vuông góc với DF và đường tròn ngoại tiếp tam giác OBD đi qua trung điểm của đoạn CF.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán (chung) năm 2020 - 2021 trường chuyên Lê Quý Đôn - Lai Châu
Đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách dự tính đi từ thành phố Lai Châu đến huyện Nậm Nhùn trong một thời gian đã định. Sau khi đi được 1 giờ thì ô tô này dừng lại nghỉ 10 phút. Do đó để đến Nậm Nhùn đúng hạn xe phải tăng tốc thêm 6 km/h. Tính vận tốc ban đầu của ô tô biết rằng quãng đường từ thành phố Lai Châu đi huyện Nậm Nhùn dài 120 km. + Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE không đi qua tâm tới đường tròn đó (B,C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. 1. Chứng minh tứ giác ABOC là tứ giác nội tiếp. 2. Chứng minh AH.AO = AD.AE. 3. Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q. Chứng minh rằng: IP + KQ ≥ PQ. + Cho a, b là các số không âm thỏa mãn a2 + b2 ≤ 2, hãy tìm giá trị lớn nhất của biểu thức: M = a√3b(a + 2b) + b√3a(b + 2a).
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hùng Vương - Phú Thọ
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hùng Vương – Phú Thọ : + Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Gọi P là điểm nằm trên đường tròn ngoại tiếp tam giác HBC và nằm trong tam giác ABC (P khác B, C, H). Gọi M là giao điểm của đường thẳng PB với đường tròn (O) (M khác B); N là giao điểm của đường thẳng PC với (O) (N khác C). Đường thẳng BM cắt AC tại E, đường thẳng CN cắt AB tại F. Đường tròn ngoại tiếp tam giác AME và đường tròn ngoại tiếp tam giác ANF cắt nhau tại Q (Q khác A). 1. Chứng minh tứ giác AEPF nội tiếp. 2. Chứng minh M, N, Q thẳng hàng. 3. Trong trường hợp AP là phân giác của MAN, chứng minh PQ đi qua trung điểm của đoạn thẳng BC. [ads] + Cho phương trình x2 + mx + n = 0 trong đó m2 + n2 = 2020. Chứng minh nếu phương trình có nghiệm x0 thì |x0| < √2021. + Cho dãy số gồm 4041 số chính phương liên tiếp, trong đó tổng của 2021 số đầu bằng tổng của 2020 số cuối. Tìm số hạng thứ 2021 của dãy số đó.
Đề thi vào lớp 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Đà Nẵng : + Trên đồ thị hàm số y = -0,5x^2, cho điểm M có hoành độ dương và điểm N có hoành độ âm. Đường thẳng MN cắt trục Oy tại C với O là gốc tọa độ. Viết phương trình đường thẳng OM khi C là tâm đường tròn ngoại tiếp tam giác OMN. [ads] + Cho tam giác ABC nhọn (AB khác AC), nội tiếp đường tròn tâm O. Kẻ đường phân giác AD (D thuộc BC) của tam giác đó. Lấy điểm E đối xứng với D qua trung điểm của đoạn BC. Đường thẳng vuông góc với BC tại D cắt AO ở H, đường thẳng vuông góc với BC tại E cắt ở AD tại K. Chứng minh rằng tứ giác BHCK nội tiếp. + Chứng minh rằng với mọi giá trị dương, khác 1 của x thì biểu thức A không nhận giá trị nguyên.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Nghệ An (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An : + Trong hình chữ nhất có chiều dài 149 cm, chiều rộng 40 cm cho 2020 điểm phân biệt. Chứng minh rằng tồn tại ít nhất 2 điểm trong số 2020 điểm đã cho mà khoảng cách giữa chúng nhỏ hơn 2 cm. + Tìm tất cả các số nguyên dương x, y và số nguyên tố p thỏa mãn p^x – y^4 = 4. + Chứng minh rằng nếu m, n là hai số tự nhiên thỏa mãn 2m^2 + m = 3n^2 + n thì 2m + 2n + 1 là số chính phương.