Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 12 môn Toán năm 2018 2019 trường THPT Lê Văn Hưu Thanh Hóa

Nội dung Đề thi KSCL lớp 12 môn Toán năm 2018 2019 trường THPT Lê Văn Hưu Thanh Hóa Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi KSCL Toán lớp 12 năm 2018 – 2019 trường THPT Lê Văn Hưu – Thanh Hóa, kỳ thi được tổ chức tại trường vào ngày 13/01/2019 nhằm kiểm tra quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán của học sinh khối 12, đề có mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, cấu trúc đề bám sát đề tham khảo môn Toán lớp 2019 của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 12 năm 2018 – 2019 trường THPT Lê Văn Hưu – Thanh Hóa : + Một trang trại chăn nuôi dự định xây dựng một hầm biogas với thể tích 12 m3 để chứa chất thải chăn nuôi và tạo khí sinh học. Dự kiến hầm chứa có dạng hình hộp chữ nhật có chiều sâu gấp rưỡi chiều rộng. Hãy xác định các kích thước đáy (dài, rộng) của hầm biogas để thi công tiết kiệm nguyên vật liệu nhất (không tính đến bề dày của thành bể). Tính kích thước (dài; rộng – tính theo đơn vị m, làm tròn đến 2 chữ số thập phân sau dấu phẩy) phù hợp yêu cầu. + Cho tứ diện đều ABCD có mặt cầu nội tiếp là (S1) và mặt cầu ngoại tiếp là (S2), hình lập phương ngoại tiếp (S2) và nội tiếp trong mặt cầu (S3). Gọi r1, r2, r3 lần lượt là bán kính các mặt cầu (S1), (S2), (S3). Khẳng định nào sau đây đúng? (Mặt cầu nội tiếp tứ diện là mặt cầu tiếp xúc với tất cả các mặt của tứ diện, mặt cầu nội tiếp hình lập phương là mặt cầu tiếp xúc với tất cả các mặt của hình lập phương). [ads] + Cho hình chóp tứ giác đều có cạnh đáy bằng 1, chiều cao bằng 2. Xét đa diện lồi H có các đỉnh là trung điểm tất cả các cạnh của hình chóp đó (tham khảo hình vẽ). Tính thể tích của H. + Một người gửi 300 triệu đồng vào ngân hàng theo thế thức lãi kép kì hạn 1 quý, với lãi suất 1,75%/một quý. Hỏi sau ít nhất bao nhiêu tháng người gửi có ít nhất 500 triệu đồng (bao gồm cả vốn lẫn lãi) từ số vốn ban đầu? (Giả sử lãi suất không thay đổi). + Tham số m thuộc khoảng nào dưới đây để đồ thị hàm số y = x^4 – 2mx^2 + 2m + m^4 có cực đại, cực tiểu mà các điểm cực trị này tạo thành một tam giác có diện tích bằng 1? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?