Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số

Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình mũ và bất phương trình mũ
Tài liệu gồm 35 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mũ và bất phương trình mũ, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết được cách giải một số dạng phương trình mũ. + Biết được cách giải một số dạng bất phương trình mũ. Kĩ năng : + Giải được một số phương trình mũ và bất phương trình mũ đơn giản bằng các phương pháp đưa về cùng cơ số, logarit hóa, đặt ẩn phụ, tính chất của hàm số. + Nhận dạng được các loại phương trình mũ và bất phương trình mũ. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Phương trình mũ. – Bài toán 1. Biến đổi về dạng phương trình cơ bản. – Bài toán 2. Phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Phương trình chứa tham số. Dạng 2 : Bất phương trình mũ. – Bài toán 1. Biến đổi về dạng bất phương trình cơ bản. – Bài toán 2. Bất phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Bất phương trình chứa tham số.
Bài giảng hàm số mũ và hàm số lôgarit
Tài liệu gồm 39 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hàm số mũ và hàm số lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Nắm vững khái niệm và tính chất của hàm số mũ, hàm số lôgarit. + Trình bày và áp dụng được công thức tìm đạo hàm của hàm số mũ, hàm số lôgarit. + Nhận biết dạng đồ thị của hàm số mũ, hàm số lôgarit. Kĩ năng : + Biết cách vận dụng tính chất của các hàm số mũ, hàm số lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit. + Biết cách vẽ đồ thị các hàm số mũ, hàm số lôgarit. + Tìm được đạo hàm của hàm số mũ, hàm số lôgarit. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đạo hàm, sự biến thiên của hàm số. – Bài toán 1. Tìm đạo hàm của các hàm số mũ – hàm số lôgarit. – Bài toán 2. Xét tính đồng biến, nghịch biến của hàm số mũ và hàm số lôgarit. Dạng 2 : Tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 2. Tìm tham số m để hàm số xác định trên khoảng cho trước. Dạng 3 : Đồ thị hàm số. Dạng 4 : Bài tập lãi suất.
Bài giảng lôgarit
Tài liệu gồm 21 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết khái niệm và tính chất của lôgarit. + Biết các quy tắc lôgarit và công thức đổi cơ số. + Biết các khái niệm lôgarit thập phân, lôgarit tự nhiên. Kĩ năng : + Biết vận dụng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản. + Biết vận dụng các tính chất của lôgarit vào các bài toán biến đổi, tính toán các biểu thức chứa lôgarit. I. LÍ THUYẾT TRỌNG TÂM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. II. CÁC DẠNG BÀI TẬP Dạng 1 : Biến đổi biểu thức lôgarit. – Bài toán 1. Chứng minh đẳng thức. – Bài toán 2. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. – Bài toán 3. Tính giá trị biểu thức theo một biểu thức đã cho. Dạng 2 : Tính giá trị của biểu thức chưa lôgarit theo một biểu thức đã cho.
Bài giảng lũy thừa và hàm số lũy thừa
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa và hàm số lũy thừa, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết các khái niệm và tính chất của lũy thừa với số mũ nguyên, lũy thừa với số mũ hửu tỉ không nguyên và lũy thừa với số mũ thực. + Biết khái niệm và tính chất của căn bậc n. + Biết khái niệm và tính chất của hàm số lũy thừa. + Biết công thức tính đạo hàm của hàm số lũy thừa. + Biết dạng đồ thị của hàm số lũy thừa. Kĩ năng : + Biết dùng các tính chất của lũy thừa để rút gọn biểu thức, so sánh những biểu thức có chứa lũy thừa. + Biết khảo sát hàm số lũy thừa. + Tính được đạo hàm của hàm số lũy thừa. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Lũy thừa. – Bài toán 1. Viết lũy thừa với dạng số mũ hữu tỷ. + Bài toán 1.1. Thu gọn biểu thức chứa căn thức. + Bài toán 1.2. Thu gọn biểu thức chứa lũy thừa. – Bài toán 2. Tính giá trị biểu thức. Dạng 2 : Hàm số lũy thừa. – Bài toán 1. Tìm tập xác định của hàm số lũy thừa. – Bài toán 2. Tính đạo hàm của hàm số lũy thừa. – Bài toán 3. Khảo sát sự biến thiên và nhận dạng đồ thị của hàm số lũy thừa.