Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề tham khảo cuối học kỳ 2 Toán 8 năm 2023 - 2024 phòng GDĐT TP Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 bộ đề tham khảo kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; các đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút; đề thi có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1. BIỂU THỨC ĐẠI SỐ. Phân thức đại số. Tính chất cơ bản của phân thức đại số. Các phép toán cộng, trừ, nhân, chia các phân thức đại số. * Nhận biết: Nhận biết được các khái niệm cơ bản về phân thức đại số: định nghĩa; điều kiện xác định; giá trị của phân thức đại số; hai phân thức bằng nhau. * Thông hiểu: Mô tả được những tính chất cơ bản của phân thức đại số. * Vận dụng: – Thực hiện được các phép tính: phép cộng, phép trừ, phép nhân, phép chia đối với hai phân thức đại số. – Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng, quy tắc dấu ngoặc với phân thức đại số đơn giản trong tính toán. 2. HÀM SỐ VÀ ĐỒ THỊ. Hàm số và đồ thị. * Nhận biết: – Nhận biết được những mô hình thực tế dẫn đến khái niệm hàm số. – Nhận biết được đồ thị hàm số. * Thông hiểu: – Tính được giá trị của hàm số khi hàm số đó xác định bởi công thức. – Xác định được toạ độ của một điểm trên mặt phẳng toạ độ. – Xác định được một điểm trên mặt phẳng toạ độ khi biết toạ độ của nó. Hàm số bậc nhất y = ax + b (a ≠ 0) và đồ thị. Hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Nhận biết: Nhận biết được khái niệm hệ số góc của đường thẳng y = ax + b (a ≠ 0). * Thông hiểu: – Thiết lập được bảng giá trị của hàm số bậc nhất y = ax + b (a ≠ 0). – Sử dụng được hệ số góc của đường thẳng để nhận biết và giải thích được sự cắt nhau hoặc song song của hai đường thẳng cho trước. * Vận dụng: – Vẽ được đồ thị của hàm số bậc nhất y = ax + b (a ≠ 0). – Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán thực tiễn (đơn giản, quen thuộc) (ví dụ: bài toán về chuyển động đều trong Vật lí). * Vận dụng cao: Vận dụng được hàm số bậc nhất và đồ thị vào giải quyết một số bài toán (phức hợp, không quen thuộc) có nội dung thực tiễn. 3. PHƯƠNG TRÌNH. Phương trình bậc nhất. * Vận dụng: – Giải được phương trình bậc nhất một ẩn. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với phương trình bậc nhất (ví dụ: các bài toán liên quan đến chuyển động trong Vật lí, các bài toán liên quan đến Hoá học). 4. CÁC HÌNH KHỐI TRONG THỰC TIỄN. Hình chóp tam giác đều, hình chóp tứ giác đều. * Nhận biết: Mô tả (đỉnh, mặt đáy, mặt bên, cạnh bên) được hình chóp tam giác đều và hình chóp tứ giác đều. * Thông hiểu: – Tạo lập được hình chóp tam giác đều và hình chóp tứ giác đều. – Tính được diện tích xung quanh, thể tích của một hình chóp tam giác đều và hình chóp tứ giác đều. – Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều (ví dụ: tính thể tích hoặc diện tích xung quanh của một số đồ vật quen thuộc có dạng hình chóp tam giác đều và hình chóp tứ giác đều). * Vận dụng: Giải quyết được một số vấn đề thực tiễn gắn với việc tính thể tích, diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều. 5. ĐỊNH LÍ PYTHAGORE. Định lí pythagore. * Thông hiểu: Giải thích được định lí Pythagore. * Vận dụng: Tính được độ dài cạnh trong tam giác vuông bằng cách sử dụng định lí Pythagore. 6. HÌNH ĐỒNG DẠNG. Tam giác đồng dạng. * Thông hiểu: – Mô tả được định nghĩa của hai tam giác đồng dạng. – Giải thích được các trường hợp đồng dạng của hai tam giác, của hai tam giác vuông. * Vận dụng: Giải quyết được một số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng (ví dụ: tính độ dài đường cao hạ xuống cạnh huyền trong tam giác vuông bằng cách sử dụng mối quan hệ giữa đường cao đó với tích của hai hình chiếu của hai cạnh góc vuông lên cạnh huyền; đo gián tiếp chiều cao của vật; tính khoảng cách giữa hai vị trí trong đó có một vị trí không thể tới được). * Vận dụng cao: Giải quyết được một số vấn đề thực tiễn (phức hợp, không quen thuộc) gắn với việc vận dụng kiến thức về hai tam giác đồng dạng. Hình đồng dạng. Nhận biết: – Nhận biết được hình đồng dạng phối cảnh (hình vị tự), hình đồng dạng qua các hình ảnh cụ thể. – Nhận biết được vẻ đẹp trong tự nhiên, nghệ thuật, kiến trúc, công nghệ chế tạo … biểu hiện qua hình đồng dạng. 7. MỘT SỐ YẾU TỐ XÁC SUẤT. Mô tả xác suất của biến cố ngẫu nhiên trong một số ví dụ đơn giản. Mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó. * Nhận biết: Nhận biết được mối liên hệ giữa xác suất thực nghiệm của một biến cố với xác suất của biến cố đó thông qua một số ví dụ đơn giản. * Vận dụng: Sử dụng được tỉ số để mô tả xác suất của một biến cố ngẫu nhiên trong một số ví dụ đơn giản.

Nguồn: toanmath.com

Đọc Sách

Đề học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Hoàng Hoa Thám, quận Ba Đình, thành phố Hà Nội. Trích dẫn Đề học kỳ 2 Toán 8 năm 2022 – 2023 trường THCS Hoàng Hoa Thám – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một phân xưởng nhận hợp đồng may đồng phục cho một trường THCS. Để kịp thời gian giao hàng, họ dự định may 30 bộ đồng phục mỗi ngày. Nhưng thực tế, do cải tiến kỹ thuật nên mỗi ngày phân xưởng đã may 40 bộ đồng phục nên không những hoàn thành trước kế hoạch 3 ngày mà còn may thêm được 20 bộ đồng phục. Tính số bộ đồng phục mà phân xưởng phải may theo hợp đồng. + Một bể bơi có hình dạng hình hộp chữ nhật có chiều dài 20m, chiều rộng 7m và chiều sâu 2,5m (như hình vẽ bên). Hỏi cần bơm vào bể cạn bao nhiêu mét khối nước để đầy bể. + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH (H thuộc BC) và phân giác BD của góc ABC (D thuộc AC). a) Chứng minh: tam giác BAH đồng dạng với tam giác BCA và góc BAH = BCA. b) Gọi I là giao điểm của AH và BD. Chứng minh: BI.BC = BA.BD. c) Kẻ CE vuông góc BD cắt tia BA tại M. Chứng minh: AI // MD và BA.BM + CE.CM = BC2.
Đề đề nghị cuối kì 2 Toán 8 năm 2022 - 2023 trường THCS Đống Đa - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề đề nghị kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Đống Đa, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề đề nghị cuối kì 2 Toán 8 năm 2022 – 2023 trường THCS Đống Đa – TP HCM : + Một mảnh đất hình chữ nhật có chiều rộng nhỏ hơn chiều dài 10m. Nếu tăng chiều dài 5m, giảm chiều rộng 4m thì diện tích giảm 50 m2. Tính chiều dài, chiều rộng của mảnh đất. + Tính chiều rộng AB của con đường như hình vẽ. Biết BC = 80m; CD = 40 m; DE = 36m. + Cho ∆ABC vuông tại A (AB < AC), với đường cao AD. a) Chứng minh ∆ABC đồng dạng với ∆DBA. Viết tỉ số đồng dạng. b) Trên đoạn AD lấy điểm E, gọi G là hình chiếu của C trên BE. Chứng minh BD.BC = BE.BG. c) Trên đoạn CE lấy điểm F sao cho BF = BA. Chứng minh BEF BFG.
Đề đề nghị cuối kì 2 Toán 8 năm 2022 - 2023 trường THCS Yên Thế - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề đề nghị kiểm tra cuối học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Yên Thế, quận Bình Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề đề nghị cuối kì 2 Toán 8 năm 2022 – 2023 trường THCS Yên Thế – TP HCM : + Một vườn rau hình chữ nhật có chiều dài hơn chiều rộng 8m. Nếu giảm chiều dài 3m và tăng chiều rộng thêm 2m thì diện tích khu vườn không đổi. Tính chiều rộng và chiều dài của khu vườn lúc đầu. + Kim tự tháp là niềm tự hào của người dân Ai Cập.Để tính được chiều cao gần đúng của kim tự tháp, người ta làm như sau: đầu tiên cắm 1 cây cọc cao 1m vuông góc với mặt đất và đo được bóng cọc trên mặt đất là 1.5m và khi đó chiều dài bóng của Kim tự tháp trên mặt đất là 208,2m. Hỏi Kim tự tháp cao bao nhiêu m? + Cho ∆ABC vuông tại A có đường cao AH. a) Chứng minh ∆ABC ~ ∆HBA. Từ đó suy ra 2 AB BH BC. b) Chứng minh ∆HAB ~ ∆HCA. Từ đó suy ra 2 AH BH HC. c) Trên tia HA lấy điểm D, E sao cho D là trung điểm AH, A là trung điểm của HE. Chứng minh rằng D là trực tâm tam giác BCE.
Đề kiểm tra cuối kỳ 2 Toán 8 năm 2021 - 2022 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 8 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận mã đề A và mã đề B. Trích dẫn đề kiểm tra cuối kỳ 2 Toán 8 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Ông của Bình hơn Bình 61 tuổi. Bình tính rằng 6 năm nữa thì bốn lần tuổi Bình chỉ kém tuổi của Ông là 1 tuổi. Hãy tính tuổi của Bình hiện nay? + Cho tam giác ABC vuông tại A, đường cao AH (H ∈ BC). a) Chứng minh ∆ABC đồng dạng với ∆HAC, từ đó suy ra AC2 = BC.HC. b) Cho biết HB = 9cm, HC = 16cm. Tính độ dài các cạnh AB, AC của ∆ABC. + Bóng của một cây cột cờ trên mặt đất có độ dài 4,8m; cùng thời điểm đó một thanh sắt vuông góc với mặt đất cao 1m có bóng dài 0,4m. Vậy chiều cao của cây cột cờ là?