Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán

Nội dung Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Bản PDF - Nội dung bài viết Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Chuyên đề phát triển VD VDC đề tham khảo thi TN THPT 2023 môn Toán Chuyên đề này được biên soạn bởi thầy giáo Đặng Việt Đông và bao gồm 529 trang. Tài liệu tập trung vào các chuyên đề phát triển bài toán mức độ vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Đây là nguồn tư liệu hữu ích với đáp án và lời giải chi tiết. Trong Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán, một số câu hỏi mẫu như: + Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = 4x^3 + 2x^2 +mx + 6\) có ba điểm cực trị? Lời giải: Chọn B. Ta có: \(3(4x^2 + mx) = 12\). Xét phương trình \(3(4x^2 + mx) = 0\). Để hàm số có ba điểm cực trị, phương trình \(3(4x^2 + mx) = 0\) phải có 3 nghiệm phân biệt. Dựa vào phân tích, ta có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy IJ, K là hình chiếu của S lên AC, CB, BA. Từ các góc giữa mặt bên và đáy, chúng ta chứng minh được H là tâm đường tròn nội tiếp của tam giác ABC. + Cho hàm số \(y = x + 3x^2 - 2x^4 + 4x^3\). Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [2023, 2023] để hàm số \(y = f(x)\) nghịch biến trên khoảng [0, 3]? Lời giải: Cần tìm số giá trị nguyên của m để hàm số \(y = f(x)\) nghịch biến trên khoảng [0, 3]. Qua phân tích chi tiết, ta có 2023 giá trị nguyên của m thỏa mãn bài toán. Bằng cách nắm vững những kiến thức và phương pháp giải bài tập trong Chuyên đề phát triển VD – VDC này, các em học sinh sẽ có thêm cơ hội rèn luyện và củng cố kiến thức Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Biên Hòa - Hà Nam lần 3
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Biên Hòa – Hà Nam lần 3 gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết.
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn IV)
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn 4) gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Một tờ “siêu giấy” dày 0,1mm có thể gấp được vô hạn lần. Hỏi sau bao nhiêu lần gấp thì tờ giấy này đụng mặt trăng. Biết khoảng cách từ trái đất đến mặt trăng là 384000km. + Đường cong trong hình bên dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? + Người thợ gốm làm cái chum từ một khối cầu có bán kính 5dm bằng cách cắt bỏ hai chỏm cầu đối nhau. Tính thể tích của cái chum biết chiều cao của nó bằng 6dm (quy tròn 2 chữ số thập phân).
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn II)
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn 2) gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Khẳng định nào sau đây là khẳng định đúng? A. Đoạn thẳng nối hai điểm cùng thuộc một mặt cầu là một đường kính của mặt cầu đó. B. Khoảng cách giữa hai đáy của một hình trụ bằng chiều cao của hình trụ đó. C. Nếu mặt phẳng cắt mặt cầu thì giao tuyến của chúng là một đường tròn lớn của mặt cầu đó. D. Độ dài đoạn thẳng nối hai điểm thuộc hai đường tròn đáy của một hình trụ bằng độ dài đường sinh của hình trụ đó. + Cho hình chóp S.ABC có SA ⊥ (ABC), ∆ABC vuông cân tại A, SA = BC = a. Tính theo a thể tích V của khối chóp S.ABC. + Cho tam giác đều ABC quay quanh đường cao AH tạo ra hình nón có chiều cao bằng 2a. Tính diện tích xung quanh Sxq của hình nón này.
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn I)
Đề thi thử THPT Quốc gia 2017 môn Toán sở GD và ĐT TP. HCM (Cụm chuyên môn 1) gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 100 cm3, bán kính đáy x (cm), chiều cao h (cm) (xem hình bên). Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất. Khi đó, kích thước của x và h gần bằng số nào nhất trong các số dưới đây để công ty X tiết kiệm được vật liệu nhất? + Ông A muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ bên. Biết đường cong phía trên là parabol, tứ giác ABCD là hình chữ nhật và giá thành là 900000 đồng trên 1 m2 thành phẩm. Hỏi ông A phải trả bao nhiêu tiền để làm cánh cửa đó? + Một người dùng một cái ca hình bán cầu có bán kính là 3cm để múc nước đổ vào trong một thùng hình trụ chiều cao 10cm và bán kính đáy bằng 6cm . Hỏi người ấy sau bao nhiêu lần đổ thì nước đầy thùng? (Biết mỗi lần đổ, nước trong ca luôn đầy).