Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1

Tài liệu gồm 778 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm GeoGebra Pro, tuyển tập 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1, giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Dạng toán 1. Phép đếm. Dạng toán 2. Cấp số cộng – cấp số nhân. Dạng toán 3. Sử dụng các công thức liên quan đến hình nón. Dạng toán 4. Xét sự đơn điệu dựa vào bảng biến thiên. Dạng toán 5. Thể tích khối lăng trụ đều. Dạng toán 6. Giải phương trình – bất phương trình logarit. Dạng toán 7. Sử dụng tính chất của tích phân. Dạng toán 8. Cực trị hàm số. Dạng toán 9. Khảo sát hàm số – nhận dạng hàm số, đồ thị. Dạng toán 10. Sử dụng tính chất của logarit. Dạng toán 11. Tính nguyên hàm bằng cách sử dụng tính chất của nguyên hàm. Dạng toán 12. Khái niệm số phức. Dạng toán 13. Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ. Dạng toán 14. Xác định tâm, bán kính, diện tích, thể tích của mặt cầu. Dạng toán 15. Xác định vectơ pháp tuyến của mặt phẳng. Dạng toán 16. Phương trình đường thẳng. Dạng toán 17. Xác định góc giữa hai đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng. Dạng toán 18. Đếm số điểm cực trị dựa vào bảng biến thiên. Dạng toán 19. Tìm giá trị lớn nhất- giá trị nhỏ nhất của hàm số trên một đoạn. Dạng toán 20. Biến đổi biểu thức lôgarit. Dạng toán 21. Phương trình, bất phương trình mũ và logarit. Dạng toán 22. Khối trụ. Dạng toán 23. Liên quan giao điểm từ hai đồ thị. Dạng toán 24. Nguyên hàm cơ bản. Dạng toán 25. Toán thực tế sử dụng hàm mũ và lôgarit. [ads] Dạng toán 26. Tính thể tích khối lăng trụ đứng. Dạng toán 27. Tiệm cận của đồ thị hàm số. Dạng toán 28. Tính chất đồ thị – hàm số – đạo hàm. Dạng toán 29. Ứng dụng tích phân. Dạng toán 30. Các phép toán số phức. Dạng toán 31. Biểu diễn hình học của số phức. Dạng toán 32. Tích vô hướng của hai vectơ trong không gian. Dạng toán 33. Viết phương trình mặt cầu. Dạng toán 34. Phương trình mặt phẳng liên quan đến đường thẳng. Dạng toán 35. Tìm véc-tơ chỉ phương của đường thẳng. Dạng toán 36. Tính xác suất của biến cố bằng định nghĩa. Dạng toán 37. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 38. Tích phân cơ bản (a), kết hợp (b). Dạng toán 39. Tìm tham số để hàm số bậc 1 trên bậc 1 đơn điệu. Dạng toán 40. Khối nón. Dạng toán 41. Lôgarit. Dạng toán 42. Max, min của hàm trị tuyệt đối có chứa tham số. Dạng toán 43. Phương trình logarit có chứa tham số. Dạng toán 44. Nguyên hàm từng phần. Dạng toán 45. Liên quan đến giao điểm của hai đồ thị. Dạng toán 46. Tìm cực trị của hàm số hợp f(u(x)) khi biết đồ thị hàm số. Dạng toán 47. Ứng dụng phương pháp hàm số giải phương trình mũ và logarit. Dạng toán 48. Tích phân liên quan đến phương trình hàm ẩn. Dạng toán 49. Tính thể tích khối chóp biết góc giữa hai mặt phẳng. Dạng toán 50. Tính đơn điệu của hàm số liên kết. Mỗi dạng toán gồm ba phần: Kiến thức cần nhớ; Bài tập mẫu; Bài tập tương tự và phát triển, có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương
Nội dung Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương Bản PDF - Nội dung bài viết Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Trong tài liệu này, Nguyễn Đại Dương đã tổng hợp cách giải các dạng toán nâng cao có khả năng xuất hiện trong câu điểm 9 của đề thi THPT Quốc gia môn Toán. Tài liệu gồm 23 trang, trình bày chi tiết và cụ thể về cách giải các bài toán phức tạp mà thường xuất hiện trong phần điểm cao của đề thi. Theo Nguyễn Đại Dương, xu hướng mới của đề thi Toán THPT Quốc gia là các bài toán câu điểm 9 dần chuyển sang các dạng khác, không chỉ xoay quanh Phương trình – Bất phương trình – Hệ phương trình như trước. Các dạng bài toán có khả năng xuất hiện theo ưu tiên sẽ bao gồm: Phương trình – Bất phương trình chứa tham số. Phương trình – Bất phương trình chứa Mũ và Logarit. Bài toán thực tế. Với tài liệu này, Nguyễn Đại Dương hi vọng rằng các học sinh sẽ trang bị cho mình kiến thức và kỹ năng giải quyết các dạng bài toán này. Nếu gặp phải trong phòng thi, các em sẽ có đủ kiến thức và tự tin để giải quyết. Đây là một tài liệu hữu ích và cần thiết để chuẩn bị tốt cho kỳ thi quan trọng.
Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook
Nội dung Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook Bản PDF - Nội dung bài viết Tài liệu học Toán tinh túy từ Lovebook Tài liệu học Toán tinh túy từ Lovebook Tài liệu "Chắt lọc tinh túy của 3 câu phân loại trong các đề thi thử THPT Quốc gia môn Toán" từ Lovebook là một bộ tài liệu giúp học sinh luyện thi hiệu quả. Cuốn sách này đã sắp xếp các bài giảng một cách logic, phù hợp cho việc ôn tập trong một tháng. Đáng chú ý ở đây là sự tập trung vào các bài tập phân loại, so sánh và phân tích sâu vấn đề.
Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.