Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Lào Cai : + Trên bàn cờ vua kích thước 8 × 8 gồm 64 ô vuông con kích thước 1 x 1. Đặt ngẫu nhiên một quân Tốt vào một ô vuông con kích thước 1 x 1 trên bàn cờ. Tính xác suất để ô vuông con kích thước 1 x 1 mà con Tốt được đặt không có tâm nằm trên đường chéo của bàn cờ và cũng không có cạnh nào nằm trên cạnh của bàn cờ (hình vuông kích thước 8 × 8). + Lúc 6 giờ 30 phút sáng, anh Hùng điều khiển một xe gắn máy khởi hành từ thành phố A đến thành phố B. Khi đi được 3/4 quãng đường, xe bị hỏng nên anh Hùng dừng lại để sửa chữa. Sau 30 phút sửa xe, anh Hùng tiếp tục điều khiển xe gắn máy đó đi đến thành phố B với vận tốc nhỏ hơn vận tốc ban đầu 10 km/h. Lúc 10 giờ 24 phút sáng cùng ngày, anh Hùng đến thành phố B. Biết rằng quãng đường từ thành phố A đến thành phố B là 160 km và vận tốc của xe trên 3/4 quãng đường đầu không đổi và vận tốc của xe trên 1/4 quãng đường sau cũng không đổi. Hỏi anh Hùng dừng xe để sửa chữa lúc mấy giờ? + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O) (AB < AC). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại E. Từ E kẻ tuyến thứ hai tới đường tròn (O) tại D (D khác A); AD cắt EO tại Q; M là trung điểm của BC. a) Chứng minh 5 điểm A, E, D, M, O cùng thuộc một đường tròn và tứ giác BQOC nội tiếp một đường tròn. b) Chứng minh rằng tiếp tuyến tại B, tiếp tuyến tại C của đường tròn (O) và đường thẳng AD đồng quy tại một điểm. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC); AD cắt BC tại K. Chứng minh HAK = MAO và KB/KC = AB2/AC2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 9 lần 3 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hà Giang : + Cho a, b, c là các số nguyên, đôi một nguyên tố cùng nhau thỏa mãn (a – c)(b – c) = c2. Chứng minh tích abc là số chính phương. + Cho a, b là các số thực không âm thỏa mãn điều kiện a + b = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a4 + 1)(b4 + 1) – 4ab. + Cho tam giác ABC không cân (AB < AC), nội tiếp đường tròn tâm O. Gọi AD (D thuộc BC) là đường cao của tam giác ABC, AM là đường kính của đường tròn tâm O, K là hình chiếu của B lên AM. a) Chứng minh ABDK là tứ giác nội tiếp và DK vuông góc với AC. b) Gọi E, F lần lượt là trung điểm của đoạn thẳng BD, CM. Chứng minh AEF = 90°.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Long An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Long An : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Ba đường cao AD, BE và CF của tam giác ABC đồng quy tại H (các điểm D, E và F lần lượt thuộc các cạnh BC, AC và AB). Các đường thẳng AD, BE và CF lần lượt cắt đường tròn (O) tại K, M và N (các điểm K, M và N lần lượt không trùng với các điểm A, B và C). a) Chứng minh H là tâm đường tròn nội tiếp tam giác DEF. b) MK cắt AC tại P, NK cắt AB tại Q. Chứng minh ba điểm Q, H, P thẳng hàng. c) Tính giá trị của biểu thức T. + Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC có bán kính bằng r và BC = a. Chứng minh. + Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho xyz là các số nguyên và 2023 Px y z. Chứng minh rằng P chia hết cho 30 khi và chỉ khi S chia hết cho 30. + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Các đường cao AD BE CF cắt nhau tại H. Tia AH cắt (O) tại K (K khác A), tia KO cắt (O) tại M (M khác K) và tia MH cắt (O) tại P (P khác M). a) Chứng minh OD MH và tứ giác AODP nội tiếp một đường tròn. b) Gọi Q là giao điểm của PA và EF. Chứng minh AQ AP AH AD và DQ EF. c) Tia PE và tia PF cắt đường tròn (O)lần lượt tại L và N (L N khác P). Chứng minh LC NB. + Cho n là số lẻ. Chứng minh rằng từ 2 n 1 số nguyên bất kì có thể chọn ra được n số sao cho tổng của chúng chia hết cho n.