Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Lào Cai : + Trên bàn cờ vua kích thước 8 × 8 gồm 64 ô vuông con kích thước 1 x 1. Đặt ngẫu nhiên một quân Tốt vào một ô vuông con kích thước 1 x 1 trên bàn cờ. Tính xác suất để ô vuông con kích thước 1 x 1 mà con Tốt được đặt không có tâm nằm trên đường chéo của bàn cờ và cũng không có cạnh nào nằm trên cạnh của bàn cờ (hình vuông kích thước 8 × 8). + Lúc 6 giờ 30 phút sáng, anh Hùng điều khiển một xe gắn máy khởi hành từ thành phố A đến thành phố B. Khi đi được 3/4 quãng đường, xe bị hỏng nên anh Hùng dừng lại để sửa chữa. Sau 30 phút sửa xe, anh Hùng tiếp tục điều khiển xe gắn máy đó đi đến thành phố B với vận tốc nhỏ hơn vận tốc ban đầu 10 km/h. Lúc 10 giờ 24 phút sáng cùng ngày, anh Hùng đến thành phố B. Biết rằng quãng đường từ thành phố A đến thành phố B là 160 km và vận tốc của xe trên 3/4 quãng đường đầu không đổi và vận tốc của xe trên 1/4 quãng đường sau cũng không đổi. Hỏi anh Hùng dừng xe để sửa chữa lúc mấy giờ? + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O) (AB < AC). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại E. Từ E kẻ tuyến thứ hai tới đường tròn (O) tại D (D khác A); AD cắt EO tại Q; M là trung điểm của BC. a) Chứng minh 5 điểm A, E, D, M, O cùng thuộc một đường tròn và tứ giác BQOC nội tiếp một đường tròn. b) Chứng minh rằng tiếp tuyến tại B, tiếp tuyến tại C của đường tròn (O) và đường thẳng AD đồng quy tại một điểm. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC); AD cắt BC tại K. Chứng minh HAK = MAO và KB/KC = AB2/AC2.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào ngày 07 tháng 12 năm 2022, đây là cơ hội cho các em học sinh thể hiện tài năng và kiến thức của mình trong môn Toán. Hãy chuẩn bị kỹ lưỡng và tự tin tham dự để có cơ hội bước tiếp trên con đường học tập và phát triển cá nhân. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 của Phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 8 tháng 12 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho các số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức Q. 2. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: Điểm K là điểm tiếp xúc của đường tròn ngoại tiếp tam giác KHC. 3. Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho đoạn MN đạt giá trị nhỏ nhất. Đây là một số câu hỏi thú vị và thách thức dành cho các em học sinh lớp 9. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới.
Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng
Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!
Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Gia Lâm Hà Nội
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Thông Báo Đề Thi Học Sinh Giỏi Toán Lớp 9 Vòng 2 Năm 2022 - 2023 Thông Báo Đề Thi Học Sinh Giỏi Toán Lớp 9 Vòng 2 Năm 2022 - 2023 Trân trọng thông báo đến quý thầy cô và các em học sinh lớp 9 về đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 23 tháng 11 năm 2022, hẹn gặp tất cả các em tại địa điểm thi đã thông báo.