Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GD&ĐT Lương Tài - Bắc NinhTrích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GD&ĐT Lương Tài - Bắc Ninh Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GD&ĐT Lương Tài - Bắc Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Lương Tài, tỉnh Bắc Ninh. Đề thi sẽ bao gồm 40% câu hỏi trắc nghiệm và 60% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi sẽ có đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Kỳ thi sẽ diễn ra vào thứ Năm ngày 06 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GD&ĐT Lương Tài - Bắc Ninh + Câu hỏi: Tìm khẳng định sai? A. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm. B. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ tâm đường tròn và đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua hai tiếp điểm. C. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì đường thẳng đi qua hai tiếp điểm là đường trung trực của đoạn thẳng nối điểm đó với tâm đường tròn. D. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó, tâm của đường tròn và hai tiếp điểm cùng nằm trên một đường tròn. + Câu hỏi: Hưởng ứng ngày "Ngày sách và văn hóa đọc Việt Nam năm 2023", một nhà sách đã có chương trình giảm giá cho tất cả loại sách. Bạn Nam mua một cuốn sách tham khảo môn Toán và một cuốn sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Sau khi giảm giá 20% cho sách môn Toán và 35% cho sách môn Ngữ văn, Nam chỉ phải trả 138000 đồng. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Câu hỏi: Một tỉnh muốn làm đường điện từ điểm A trên bờ biển đến điểm B trên một hòn đảo. Biết chi phí làm 1km đường điện trên bờ là 5 tỷ đồng, dưới nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB' sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí là thấp nhất.

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh, kỳ thi nhằm tuyển chọn các em học sinh đáp ứng điều kiện về học lực vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh, đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, phần trắc nghiệm gồm 6 câu, phần tự luận gồm 4 câu, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Cho đường tròn (O), hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI, BK của tam giác ABC cắt nhau tại điểm H. BK cắt (O) tại điểm N (khác điểm B); AI cắt (O) tại điểm M (khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. [ads] + Cho phương trình x^2 – 2mx – 2m – 1 = 0 (1) với m là tham số. Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho √(x1 + x2) + √(3 + x1x2) = 2m + 1. + Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức M = (a^3 + b^3 + 4)/(ab + 1).
Đề Toán tuyển sinh lớp 10 năm học 2019 2020 sở GDĐT Hà Nội (chuyên Toán)
Ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, kỳ thi dành cho các thí sinh dự thi vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán, thời gian học sinh làm bài là 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán) : + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). [ads] 1) Chứng minh MI^2 = MJ.MA. 2) Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. 3) Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Mỗi điểm trong một mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. 1) Chứng minh trong mặt phẳng đó tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. 2) Gọi tam giác có ba đỉnh được tô đi cùng một màu là tam giác đơn sắc. Chứng minh trong mặt phẳng đó tồn tại hai tam giác đơn sắc là hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019.
Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Hải Dương
Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đáp ứng đủ tiêu chí về học lực vào học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương gồm 5 bài toán dạng tự luận, đề thi gồm 1 trang, học sinh có 120 phút để làm bài thi, đề thi có lời giải chi tiết. [ads] Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Hải Dương : + Cho hai đường thẳng (d1): y = 2x – 5 và (d2): y = 4x – m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. + Theo kế hoạch, một xưởng may phải may xong 360 bộ quần áo trong một thời gian quy định. Đến khi thực hiện, mỗi ngày xưởng đã may được nhiều hơn 4 bộ quần áo so với số bộ quần áo phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Cho phương trình: x^2 – (2m + 1)x – 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m. Tìm các giá trị của m sao cho |x1| – |x2| = 5 và x1 < x2.
Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 - 2020 sở GDĐT Hà Nam (Đề chung)
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo Hà Nam (Đề chung – Vòng 1), đề thi được dành cho toàn bộ các thí sinh tham dự kỳ thi, đề gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số). 1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B. 2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2×1 + x2 = 1. [ads] + Cho đường tròn (O;R) và điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AB và AC của đường tròn (O), với B và C là hai tiếp điểm. Kẻ cát tuyến AMN của đường tròn (O) (M nằm giữa hai điểm A và N). Gọi H là giao điểm của OA và BC. 1. Chứng minh tứ giác ABOC nội tiếp. 2. Chứng minh AM.AN = AH.AO. 3. Chứng minh HB là đường phân giác của góc MHN. 4. Gọi I, K lần lượt là hình chiếu của M trên AB và AC. Tìm giá trị lớn nhất của MI.MK khi cát tuyến AMN quay quanh A.