Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Lào Cai

Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022-2023 sở GD&ĐT Lào Cai Đề thi tuyển sinh THPT chuyên môn Toán năm 2022-2023 sở GD&ĐT Lào Cai Sytu trân trọng giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai. Đề thi này dành cho thí sinh thi vào trường THPT chuyên Lào Cai và sẽ được tổ chức vào ngày thứ Bảy, ngày 11 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết được thực hiện bởi Trung tâm toán học Pytago. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Lào Cai: 1. Tính xác suất để số lấy ra từ tập hợp các số tự nhiên có 4 chữ số là số chính phương và không vượt quá 2022. 2. Nếu một công nhân cần làm 54 sản phẩm trong thời gian nhất định, nhưng do yêu cầu đột xuất, anh ấy đã phải làm 68 sản phẩm. Mỗi giờ anh ấy đã làm thêm 3 sản phẩm, khiến công việc hoàn thành sớm hơn dự kiến 20 phút. Hỏi mỗi giờ anh ấy cần làm bao nhiêu sản phẩm? 3. Cho tam giác nhọn ABC không cân. Đường cao AD, BE, CF của tam giác cắt nhau tại H. Trọng tâm của tam giác là I và trung điểm của BC là M. Chứng minh rằng tứ giác DMEF nội tiếp, tứ giác IOMK là hình thang cân, KF.HE = KE.HF, và TM, AH, EF đồng quy. Hy vọng rằng đề thi này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh và đạt kết quả cao nhất. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào 10 lần 1 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo Tân Kỳ, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào 10 lần 1 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho phương trình bậc hai x2 – 7x + 5 = 0 có hai nghiệm phân biệt x1; x2. Không giải phương trình hãy tính giá trị của biểu thức T. + Một xe khách đi từ A đến B với thời gian dự định. Nếu xe khách đi với vận tốc 40 km/h thì đến B muộn hơn so với thời gian dự định là 36 phút. Nếu xe khách đi với vận tốc 60 km/h thì đến B sớm hơn so với thời gian dự định là 24 phút. Tính độ dài quảng đường AB và thời gian dự định của xe khách. + Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Vẽ đường cao AD; gọi E, F lần lượt là hình chiếu của A trên các tiếp tuyến tại B, C của đường tròn (O). a) Chứng minh ADBE là tứ giác nội tiếp. b) Chứng minh AD2 = AE.AF c) Gọi M là giao điểm của các tiếp tuyến tại B và C của đường tròn (O). P là giao điểm thứ hai của MA và đường tròn (O). Qua điểm P kẻ đường thẳng vuông góc với OB cắt BC tại I, cắt AB tại Q. Chứng minh rằng I là trung điểm của PQ.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THCS Dịch Vọng, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật trước đây có chu vi là 124m. Người ta mở rộng chiều dài thêm 5m và chiều rộng thêm 3m. Do đó diện tích mảnh vườn tăng thêm 255 m². Hỏi mảnh vườn ban đầu có diện tích là bao nhiêu? + Tính diện tích sơn cần dùng để sơn phủ kín mặt ngoài của một đoạn ống nước hình trụ có chiều dài là 4m và đường kính đáy bằng 20cm (biết pi = 3,14. Làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) và dây BC cố định (BC không đi qua tâm O). Gọi A là điểm chính giữa cung nhỏ BC, OA cắt BC tại I, lấy điểm E thuộc cung lớn BC. Nối AE cắt BC tại D. Kẻ CH vuông góc với AE tại H, CH cắt BE tại M. a) Chứng minh bốn điểm A, I, H, C cùng thuộc một đường tròn. b) Chứng minh ABD đồng dạng với AEB, từ đó suy ra AB2 = AE.AD c) Chứng minh đường tròn ngoại tiếp ABDE tiếp xúc với AB. Tìm vị trí của điểm E để diện tích AMAC lớn nhất.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 04 năm 2022.
Đề thi thử Toán lần 1 vào lớp 10 năm 2022 - 2023 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán lần 1 tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2022. Trích dẫn đề thi thử Toán lần 1 vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Tây Hồ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai đội sản xuất làm được 1100 sản phẩm. Sang tháng thứ hai, đội I làm vượt mức 15% và đội II làm vượt mức 20% so với tháng thứ nhất, vì vậy cả hai đội đã làm được 1295 sản phẩm. Hỏi trong tháng thứ nhất mỗi đội làm bao nhiêu sản phẩm? + Người ta thả một cục đá vào cốc thủy tinh hình trụ có chứa nước, đá chìm hoàn toàn xuống phần chứa nước trong cốc. Em hãy tính thể tích cục đá đó biết diện tích đáy của cốc nước hình trụ là 16,5 cm2 và nước trong cốc dâng thêm 80 mm. + Cho phương trình x2 – mx – m – 1 = 0 (m là tham số). Tìm các giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x1^3 + x2^3 = -1.