Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Anh Sơn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Anh Sơn, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Anh Sơn – Nghệ An : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hưởng ứng phong trào trường học xanh – sạch – đẹp, Liên đội của một trường THCS đã phát động phong trào kế hoạch nhỏ thu gom giấy loại. Biết tổng khối 6 và khối 8 thu gom được tổng cộng 730kg giấy loại. Trong đó khối 6 mỗi em nạp 2kg, khối 8 mỗi em nạp 3kg giấy loại. Biết rằng khối 6 đông hơn khối 8 là 10 em. Tính số học sinh mỗi khối của trường? + Công ty sữa Vinamilk chuyên sản xuất sữa Ông Thọ, hộp sữa có dạng hình trụ có đường kính 7 cm, chiều cao là 8 cm. Tính diện tích giấy làm nhãn mác cho 24 hộp sữa (một thùng) loại trên theo 2 cm. Biết nhãn dán kín phần thân hộp sữa như hình vẽ và không tính phần mép dán (Lấy π ≈ 3,14; kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ AH vuông góc với BC, từ H vẽ HM vuông góc với AB và HN vuông góc với ACH BC M AB N AC. Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O;R) tại K a. Chứng minh tứ giác AMHN nội tiếp b. Chứng minh AE vuông góc với MN c. Chứng minh AH = AK.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức nhằm giúp các em học sinh lớp 9 muốn thi tuyển vào trường biết được cấu trúc đề, làm quen với kỳ thi để có sự chuẩn bị tốt nhất cho kỳ thi vượt cấp, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2017 - 2018 trường Archimedes Academy - Hà Nội lần 6
Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 gồm 5 bài toán tự luận, thí sinh làm bài trong khoảng thời gian 120 phút, nội dung các bài toán trong đề gồm các chủ đề sau: tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi được diễn ra vào ngày 21 tháng 4 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán 2017 – 2018 : + Một ô tô đi từ A đến B cách nhau 260km, sau khi ô tô đi được 120km với vận tốc dự định thì tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của ô tô, biết xe đến B sớm hơn thời gian dự định 20 phút. [ads] + Cho hệ phương trình x + 2y = 3, x + my = 1 (m là tham số). Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x, y) sao cho x, y là các số nguyên. + Cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (m là tham số) a) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú – Hà Nội được biên soạn nhằm giúp các em nắm được cấu trúc, độ khó của đề thi và làm quen với hình thức thi để có sự chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, không tính thời gian phát đề, đề thi có lời giải chi tiết và thang điểm.
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long - Hà Nội
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút( không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 25 tháng 02 năm 2018, đề thi thử có lời giải chi tiết . Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một khoảng thời gian đã định. Nếu xe chạy với vận tốc 35 km/h thì đến B chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến B sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc ban đầu. + Cho các số thực không âm x, y, z thỏa mãn: x ≤ 1, y ≤ 1, z ≤ 1 và x + y + z = 3/2. Tím giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x^2 + y^2 + z^2. [ads] + Cho đường tròn tâm O, bán kính R . Điểm A thuộc đường tròn, BC là một đường kính (A ≠ B, A ≠ C). Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của đường tròn (O, R). 1) Chứng minh rằng: AB^2 = BH.BC. 2) Chứng minh: PB là tiếp tuyến của đường tròn (O). 3) Chứng minh ba điểm P, M, C thẳng hàng. 4) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ.