Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm và các phương pháp tìm nguyên hàm - Trần Văn Tài

Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm được biên soạn bởi thầy Trần Văn Tài gồm 70 trang tóm tắt các lý thuyết và tính chất của nguyên hàm, phân dạng toán, hướng dẫn phương pháp tìm nguyên hàm và tuyển chọn các bài tập trắc nghiệm nguyên hàm có đáp án giúp học sinh học tốt nội dung kiến thức nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3). Khái quát nội dung tài liệu nguyên hàm và các phương pháp tìm nguyên hàm – Trần Văn Tài: A. Khái niệm nguyên hàm và tính chất của nguyên hàm . + Trình bày khái niệm và tính chất của nguyên hàm. + Bảng nguyên hàm một số hàm số thường gặp (với C là hằng số tùy ý). + Một số lưu ý cần nắm: 1. Cần nắm vững bảng nguyên hàm. 2. Nguyên hàm của một tích (thương) của nhiều hàm hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần. 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm). B. Các dạng toán nguyên hàm thường gặp và phương pháp tìm nguyên hàm . Dạng toán 1 . TÍNH NGUYÊN HÀM BẰNG BẢNG NGUYÊN HÀM 1. Tích của đa thức hoặc lũy thừa → khai triển. 2. Tích các hàm mũ → khai triển theo công thức mũ. 3. Chứa căn → chuyển về lũy thừa. 4. Tích lượng giác bậc một của sin và cosin → khai triển theo công thức tích thành tổng. 5. Bậc chẵn của sin và cosin → hạ bậc. [ads] Dạng toán 2 . TÍNH NGUYÊN HÀM CỦA HÀM SỐ HỮU TỶ 1. Nếu bậc của tử số P(x) ≥ bậc của mẫu số Q(x) → Chia đa thức. 2. Nếu bậc của tử số P(x) < bậc của mẫu số Q(x) → Xem xét mẫu số và khi đó: + Nếu mẫu số phân tích được thành tích số, ta sẽ sử dụng đồng nhất thức để đưa về dạng tổng của các phân số. + Nếu mẫu số không phân tích được thành tích số (biến đổi và đưa về dạng lượng giác). Dạng toán 3 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 1. Đổi biến số dạng 1: t = φ(x). 2. Đổi biến số dạng 2: x = φ(t). Dạng toán 4 . TÍNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN + Nhận dạng: Tích 2 hàm khác loại nhân với nhau. + Thứ tự ưu tiên chọn u: log – đa – lượng – mũ và dv = phần còn lại. Nghĩa là nếu có In hay log thì chọn u = ln hay u = log và dv = còn lại. Nếu không có ln, log thì chọn u = đa thức và dv = còn lại. Nếu không có log, đa thức, ta chọn u = lượng giác … + Lưu ý rằng bậc của đa thức và bậc của In tương ứng với số lần lấy nguyên hàm. + Dạng mũ nhân lượng giác là dạng nguyên hàm từng phần luân hồi.

Nguồn: toanmath.com

Đọc Sách

600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng - Nhóm Toán
Tài liệu tuyển chọn 600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng có đáp án được biên soạn bởi các thầy cô trên groups Nhóm Toán gồm 96 trang được chia thành 8 đề. Trích dẫn tài liệu : + Diện tích hình phẳng giới hạn bởi hai đường thẳng x = 0, x = π và đồ thị của hai hàm số y = cosx, y = sinx là: A. 2 + √2   B. 2 C. √2   D. 2√2 + Khẳng định nào sau đây đúng? A. Nếu w'(t) là tốc độ tăng trưởng cân nặng/năm của một đứa trẻ, thì tích phân từ 5 đến 10 của hàm số w'(t)dt là sự cân nặng của đứa trẻ giữa 5 và 10 tuổi. B. Nếu dầu rò rỉ từ 1 cái thùng với tốc độ r(t) tính bằng galông/phút tại thời gian t, thì tích phân từ 0 đến 120 của hàm số r(t)dt biểu thị lượng galông dầu rò rỉ trong 2 giờ đầu tiên. [ads] C. Nếu r(t) là tốc độ tiêu thụ dầu của thế giới, trong đó t được bằng năm, bắt đầu tại t = 0 vào ngày 1 tháng 1 năm 2000 và r(t) được tính bằng thùng/năm, tích phân từ 0 đến 17 của hàm số r(t)dt biểu thị số lượng thùng dầu tiêu thụ từ ngày 1 tháng 1 năm 2000 đến ngày 1 tháng 1 năm 2017. D. Cả A, B, C đều đúng. + Cho hàm số f(x) = sin2x.cosx và các mệnh đề sau: i) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C ii) Họ nguyên hàm của hàm số là -1/6.cos3x – 1/2cosx + C ii) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C A. Chỉ có duy nhất một mệnh đề đúng B. Có hai mệnh đề đúng C. Không có mệnh đề nào đúng D. Cả ba mệnh đều đều đúng
10 dạng tích phân thường gặp trong đề thi Quốc gia - Nguyễn Thanh Tùng
Trong các các kì thi Đại Học – Cao Đẳng câu tích phân luôn mặc định xuất hiện trong đề thi môn Toán. Tích phân không phải là câu hỏi khó, đây là một bài toán nhẹ nhàng, mang tính chất “cho điểm”. Vì vậy việc mất điểm sẽ trở nên “vô duyên” với những ai đã bỏ chút thời gian đọc tài liệu. Ở bài viết nhỏ này sẽ cung cấp tới các em các dạng tích phân thường gặp xuất hiện trong các kì thi Đại Học – Cao Đẳng (và đề thi cũng sẽ không nằm ngoài các dạng này). Với cách giải tổng quát cho các dạng, các ví dụ minh họa đi kèm, cùng với lượng bài tập đa dạng, phong phú. Mong rằng sau khi đọc tài liệu, việc đứng trước một bài toán tích phân sẽ không còn là rào cản đối với các em. Chúc các em thành công! Trong bài viết này sẽ giới thiệu tới các em 8 phần: [ads] I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN IV. 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG V. ỨNG DỤNG TÍCH PHÂN VI. CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI VII. DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA nCk VIII. KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC