Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.

Nguồn: toanmath.com

Đọc Sách

Một số bài toán về đường tròn
Nội dung Một số bài toán về đường tròn Bản PDF - Nội dung bài viết Một số bài toán về đường tròn Một số bài toán về đường tròn Trong tài liệu có tổng cộng 116 trang, chúng ta sẽ tìm thấy một số bài toán về đường tròn được tuyển chọn kỹ lưỡng, đặc biệt là những bài toán hay và khó. Các bài toán này đi kèm với đáp án và lời giải chi tiết, giúp học sinh dễ dàng tham khảo trong quá trình ôn tập chuẩn bị thi vào lớp 10 môn Toán, cũng như ôn thi học sinh giỏi môn Toán ở bậc THCS. A. Một số kiến thức cần nhớ I. Sự xác định đường tròn: Tài liệu bao gồm định nghĩa, vị trí tương đối của một điểm đối với một đường tròn, cách xác định đường tròn và tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung: So sánh độ dài của đường kính và dây, quan hệ vuông góc giữa đường kính và dây, liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Vị trí tương đối của đường thẳng và đường tròn: Bao gồm vị trí tương đối của đường thẳng và đường tròn, dấu hiệu nhận biết tiếp tuyến của đường tròn, tính chất của hai tiếp tuyến cắt nhau, đường tròn nội tiếp tam giác và đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn: Bao gồm tính chất của đường nối tâm, vị trí tương đối của hai đường tròn và tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn: Bao gồm góc ở tâm, góc nội tiếp, góc tạo bởi tia tiếp tuyến với dây cung, góc có đỉnh ở bên trong hoặc ở ngoài đường tròn, tứ giác nội tiếp, đường tròn ngoại tiếp và đường tròn nội tiếp. VI. Một số kiến thức bổ sung: Bao gồm một số tính chất về tiếp tuyến, dấu hiệu nhận biết tứ giác nội tiếp và một số định lí hình học nổi tiếng. B. Một số ví dụ minh họa Tài liệu cũng cung cấp một số ví dụ minh họa để giúp học sinh hiểu rõ hơn về các kiến thức được trình bày. C. Bài tập tự luyện Để giúp học sinh ôn tập và rèn luyện, tài liệu cung cấp một loạt bài tập tự luyện với đáp án chi tiết. D. Hướng dẫn giải Cuối cùng, tài liệu cung cấp hướng dẫn giải cho các bài tập, giúp học sinh tự kiểm tra và tự học sau khi đã tự luyện.
Các dạng toán thực tế ôn thi vào môn Toán
Nội dung Các dạng toán thực tế ôn thi vào môn Toán Bản PDF - Nội dung bài viết Các dạng toán thực tế ôn thi vào môn Toán Các dạng toán thực tế ôn thi vào môn Toán Thông tin về sản phẩm: Tài liệu này bao gồm 188 trang, là tuyển tập các dạng toán thực tế để ôn thi vào lớp 10 môn Toán. Sách cung cấp đầy đủ đáp án và lời giải chi tiết cho từng dạng toán. Dạng Toán lớp 1: Dạng toán chuyển động Trong loại dạng toán này, cần chú ý đến công thức S = vt, với S là quãng đường, v là vận tốc và t là thời gian. Nguyên tắc cộng vận tốc cũng cần được áp dụng, ví dụ như vận tốc xuôi dòng = vận tốc thực + vận tốc dòng nước. Dạng Toán lớp 2: Dạng toán năng suất và công việc Phải thực hiện việc tính toán dựa trên công thức NS 1 + NS 2 = tổng NS và sử dụng thông tin về khối lượng công việc để giải quyết vấn đề. Dạng Toán lớp 3: Dạng toán liên quan đến tuổi Ví dụ: Tính tuổi trung bình của giáo viên nam và giáo viên nữ trong một trường, biết rằng số giáo viên nữ gấp ba lần số giáo viên nam. Dạng Toán lớp 4: Dạng toán liên quan đến kinh doanh Đưa ra ví dụ về việc tính toán lợi nhuận hoặc lỗ khi sản xuất và bán hàng. Dạng Toán lớp 5: Dạng toán hình học Ví dụ: Xác định đã tràn nước hay chưa khi chuyển nước từ lọ hình trụ này sang lọ hình trụ khác. Dạng Toán lớp 6: Dạng toán liên quan đến bộ môn Hóa học Ví dụ: Tính toán về nồng độ dung dịch trước và sau khi thêm nước vào dung dịch chứa muối. Dạng Toán lớp 7: Dạng toán liên quan đến bộ môn Vật lý Phải áp dụng công thức để ước lượng tốc độ xe trên đường và giải quyết vấn đề liên quan đến vật lý. Dạng Toán lớp 8: Dạng toán tổng hợp Ví dụ: Xác định ngày trong tuần dựa trên ngày, tháng và năm cụ thể. Đây là một tài liệu hữu ích để ôn thi môn Toán, cung cấp đầy đủ các dạng toán thực tế giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và áp dụng kiến thức vào thực tế.
Phân loại theo chương, bài các đề tuyển sinh môn Toán năm học 2020 2021
Nội dung Phân loại theo chương, bài các đề tuyển sinh môn Toán năm học 2020 2021 Bản PDF - Nội dung bài viết Tài liệu tuyển sinh Toán 2020 2021 phân loại theo chương, bài Tài liệu tuyển sinh Toán 2020 2021 phân loại theo chương, bài Được tổng hợp bởi thầy giáo Diệp Tuân, tài liệu này bao gồm 224 trang được phân loại cụ thể theo từng chương và từng bài trong đề tuyển sinh môn Toán. Việc phân loại theo cấu trúc chương, bài sẽ giúp học sinh dễ dàng tìm kiếm và ôn tập một cách hiệu quả. Đây là tài liệu hữu ích giúp học sinh chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới.
Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán
Nội dung Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Bản PDF - Nội dung bài viết Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán Tài liệu "Các bài toán số học tuyển chọn từ các đề tuyển sinh chuyên Toán" được biên soạn bởi nhóm tác giả Mathpiad, gồm có Phan Quang Đạt, Nguyễn Nhất Huy, và Dương Quỳnh Châu. Tài liệu này bao gồm 62 trang, chứa đựng các bài toán số học chọn lọc từ các đề thi tuyển sinh chuyên Toán. Với sự tổng hợp kỹ lưỡng và chọn lọc từ những tác giả uy tín, đây sẽ là tài liệu hữu ích cho những ai đam mê và muốn thử sức với những bài toán số học phức tạp.