Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học tọa độ Oxyz (dành cho học sinh Yếu - TB) - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề hình học tọa độ Oxyz (dành cho học sinh Yếu – TB), tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 39 trang, tài liệu tóm gọn lý thuyết cơ bản, phương pháp giải toán và tuyển chọn một số bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz thuộc chương trình Hình học 12 chương 3, các bài tập ở mức độ nhận biết và thông hiểu, giúp học sinh có học lực yếu – trung bình lấy lại nền tảng kiến thức. Khái quát nội dung tài liệu hình học tọa độ Oxyz (dành cho học sinh Yếu – TB) – Đặng Việt Đông: BÀI 1 : HỆ TRỤC TỌA ĐỘ 1. Các phép toán về toạ độ của vectơ và của điểm. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. 2. Xác định điểm trong không gian. Chứng minh tính chất hình học. Diện tích – Thể tích. + Sử dụng các công thức về toạ độ của vectơ và của điểm trong không gian. + Sử dụng các phép toán về vectơ trong không gian. + Công thức xác định toạ độ của các điểm đặc biệt. + Tính chất hình học của các điểm đặc biệt. BÀI 2 : PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu (S) có tâm I và bán kính R. Dạng 2: Viết phương trình mặt cầu (S) có tâm I và đi qua điểm A. Dạng 3: Viết phương trình mặt cầu (S) nhận đoạn thẳng AB cho trước làm đường kính. Dạng 4: Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D (mặt cầu ngoại tiếp tứ diện). Dạng 5: Viết phương trình mặt cầu (S) đi qua ba điểm A, B, C và có tâm I nằm trên mặt phẳng (P) cho trước. Dạng 6: Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P) cho trước. Dạng 7: Mặt cầu (S) có tâm I và cắt mặt phẳng (P) cho trước theo giao tuyến là một đường tròn thoả điều kiện. [ads] BÀI 3 : PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng (α) đi qua điểm M và có vectơ pháp tuyến n. Dạng 2: Viết phương trình mặt phẳng (α) đi qua điểm M và có cặp vectơ chỉ phương a, b. Dạng 3: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với mặt phẳng (β). Dạng 4: Viết phương trình mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng. Dạng 5: Viết phương trình mặt phẳng (α) đi qua một điểm M và một đường thẳng d không chứa M. Dạng 6: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. Dạng 7: Viết phương trình mặt phẳng (α) chưa hai đường thẳng cắt nhau d1 và d2. Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng d1 và song song với đường thẳng d2 (d1 và d2 chéo nhau). Dạng 9: Viết phương trình mặt phẳng (α) đi qua điểm M và song song với hai đường thẳng chéo nhau d1 và d2. Dạng 10: Viết phương trình mặt phẳng (α) chứa một đường thẳng d và vuông góc với mặt phẳng (β). Dạng 11: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với hai mặt phẳng cắt nhau (β) và (γ). Dạng 12: Viết phương trình mặt phẳng (α) chứa đường thẳng d cho trước và cách điểm M một khoảng k cho trước. Dạng 13: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S) tại điểm H. BÀI 4 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng Δ đi qua điểm M và có vectơ chỉ phương u. Dạng 2: Viết phương trình đường thẳng Δ đi qua hai điểm M, N. Dạng 3: Viết phương trình đường thẳng Δ đi qua điểm M và song song với đường thẳng d cho trước. Dạng 4: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α) cho trước. Dạng 5: Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (P), (Q). Dạng 6: Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 Dạng 7: Viết phương trình đường thẳng Δ đi qua điểm M, vuông góc và cắt đường thẳng d. Dạng 8: Viết phương trình đường thẳng Δ đi qua điểm M và cắt hai đường thẳng d1, d2. Dạng 9: Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. Dạng 10: Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. Dạng 11: Viết phương trình đường thẳng Δ là hình chiếu của đường thẳng d lên mặt phẳng (α).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán
giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu chuyên đề phương pháp tọa độ trong không gian Oxyz (Hình học 12 chương 3) nhằm bổ trợ cho các em học sinh khối 12 trong quá trình ôn thi THPT Quốc gia môn Toán. Tài liệu gồm 182 trang được biên soạn bởi thầy Lê Văn Đoàn phân dạng và tuyển chọn các bài toán thuộc các chủ đề: hệ trục tọa độ trong không gian, phương trình mặt phẳng, phương trình đường thẳng. Mục lục tài liệu chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán: BÀI 1 . HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng toán 1. Bài toán liên quan đến véctơ và độ dài đoạn thẳng (Trang 3). + Dạng toán 2. Bài toán liên quan đến trung điểm và trọng tâm (Trang 4). + Dạng toán 3. Bài toán liên quan đến hai véctơ bằng nhau (Trang 5). + Dạng toán 4. Hai véctơ cùng phương và ba điểm thẳng hàng (Trang 8). + Dạng toán 5. Nhóm bài toán liên quan đến hình chiếu và điểm đối xứng (Trang 9). + Dạng toán 6. Bài toán liên quan đến tích vô hướng (Trang 17). + Dạng toán 7. Bài toán liên quan đến tích có hướng (Trang 19). + Dạng toán 8. Xác định các yếu tố cơ bản của mặt cầu (Trang 23). + Dạng toán 8. Viết phương trình mặt cầu dạng cơ bản (Trang 25). [ads] BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của mặt phẳng (Trang 44). + Dạng toán 2. Khoảng cách, góc và vị trí tương đối (Trang 45). + Dạng toán 2. Viết phương trình mặt phẳng (Trang 55). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của đường thẳng (Trang 81). + Dạng toán 2. Góc (Trang 83). + Dạng toán 3. Khoảng cách (Trang 86). + Dạng toán 4. Vị trí tương đối (Trang 88). + Dạng toán 5. Viết phương trình đường thẳng (Trang 105). + Dạng toán 6. Hình chiếu, điểm đối xứng và bài toán liên quan (Trang 139). + Dạng toán 7. Bài toán cực trị và một số bài toán khác (Trang 155).
Trắc nghiệm VD - VDC hình học Oxyz - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Hình học 12 chương 3 – phương pháp tọa độ trong không gian Oxyz, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề hình học Oxyz. Tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông gồm 144 trang với các bài tập trắc nghiệm hình học Oxyz ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về hình học Oxyz được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC hình học Oxyz – Đặng Việt Đông: Dạng toán 1. Hệ tọa độ trong không gian. Dạng toán 2. Mặt phẳng trong không gian. Dạng toán 3. Góc, khoảng cách, vị trí tương đối với mặt phẳng. Dạng toán 4. Đường thẳng trong không gian. Dạng toán 5. Góc, khoảng cách, vị trí tương đối với đường thẳng. Dạng toán 6. Mặt cầu trong không gian. Dạng toán 7. Min – max trong hình học Oxyz. + Min – max với mặt phẳng. + Min – max với đường thẳng. + Min – max với mặt cầu. Dạng toán 8. Tọa độ hóa hình học không gian.
Các dạng toán phương trình đường thẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).
Các dạng toán phương trình mặt phẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình mặt phẳng và một số bài toán liên quan đến phương trình mặt phẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan: Phần A . CÂU HỎI Dạng toán 1. Xác định VTPT (Trang 2). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 3). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 3). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 4). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 7). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 8). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 10). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 10). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 11). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 11). + Dạng toán 3.4 Cực trị (Trang 13). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 16). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 16). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 17). + Dạng toán 4.3 Cực trị (Trang 20). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 21). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 21). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 23). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 24). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTPT (Trang 26). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 27). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 27). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 27). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 31). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 33). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 36). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 36). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 37). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 38). + Dạng toán 3.4 Cực trị (Trang 39). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 47). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 47). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 48). + Dạng toán 4.3 Cực trị (Trang 52). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 57). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 57). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 59). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 61).