Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường PTNK TP HCM

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021-2022 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề tuyển sinh gồm các câu hỏi thú vị và phức tạp. Ví dụ, cho tam giác ABC vuông tại A. Các điểm E, F lần lượt thay đổi trên các cạnh AB, AC sao cho EF // BC. Gọi D là giao điểm của BF với CE và H là hình chiếu vuông góc của D lên EF. Đường tròn (I) đường kính EF cắt BF, CE tương ứng tại M, N (M khác F, N khác E). Bạn sẽ phải chứng minh rằng AD và đường tròn ngoại tiếp tam giác HMN đều đi qua tâm I của đường tròn (I). Ngoài ra, đề còn đưa ra câu hỏi liên quan đến việc chọn tập hợp chữ cái từ 26 chữ cái trong tiếng Việt. Ví dụ, nếu có N tập hợp (N > 6), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ bảng chữ cái. Bạn sẽ phải chứng minh rằng không có chữ cái nào xuất hiện trong 6 tập hợp từ N tập hợp đã cho. Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM không chỉ là một bài kiểm tra về kiến thức mà còn là cơ hội để các em học sinh thể hiện khả năng logic, tư duy và sự sáng tạo trong giải quyết vấn đề. Chúc các em có kết quả tốt trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Bến Tre, tỉnh Bến Tre; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.
Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Hạ Long - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Hạ Long – Quảng Ninh : + Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. + Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. + Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương.