Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp Đirichlê và ứng dụng - Nguyễn Hữu Điển

Tài liệu gồm 184 trang, được biên soạn bởi tác giả Nguyễn Hữu Điển, hướng dẫn ứng dụng phương pháp Đirichlê trong giải toán. Nguyên lý những cái lồng và các chú thỏ đã được biết đến từ rất lâu. Ngay trong chương trình phổ thông cơ sở chúng ta cũng đã làm quen với phương pháp giải toán này. Thực ra nguyên lý này mang tên nhà bác học người Đức Pête Gutxtap Legien Dirichlet (1805 – 1859). Nguyên lý phát biểu rất đơn giản: Nếu chúng ta nhốt thỏ vào các lồng mà số lồng ít hơn số thỏ, thì thể nào cũng có một lồng nhốt ít nhất hai con thỏ. Chỉ bằng nguyên lý đơn giản như vậy hàng loạt các bài toán đã được giải. Cuốn sách được biên soạn lại theo từng chủ đề có liên quan đến nguyên lý, mỗi cách giải trong ví dụ của từng chương là áp dụng điển hình nguyên lý Đirichlê. Bài tập giải trước có liên quan đến bài giải sau nên cần lưu ý khi đọc sách. Với mong muốn cùng bạn đọc thảo luận một phương pháp chứng minh toán học và hy vọng cung cấp một tài liệu bổ ích cho các thầy cô giáo và các em học sinh ham mê tìm tòi trong toán học, tác giả mạnh dạn biên soạn cuốn sách này. MỤC LỤC : Chương 1. Nguyên lý Đirichlê và ví dụ. 1.1. Nguyên lý Đirichlê. 1.2. Ví dụ. 1.3. Bài tập. Chương 2. Số học. 2.1. Phép chia số tự nhiên. 2.2. Ví dụ. 2.3. Bài tập. Chương 3. Dãy số. 3.1. Nguyên lý Đirichlê cho dãy số vô hạn. 3.2. Ví dụ. 3.3. Bài tập. Chương 4. Hình học. 4.1. Ví dụ. 4.2. Bài tập. Chương 5. Mở rộng nguyên lý Đirichlê. 5.1. Nguyên lý Đirichlê mở rộng. 5.2. Ví dụ. 5.3. Bài tập. Chương 6. Bài tập số học nâng cao. 6.1. Định lý cơ bản của số học. 6.2. Ví dụ. 6.3. Bài tập. Chương 7. Bài tập dãy số nâng cao. 7.1. Ví dụ. 7.2. Bài tập. Chương 8. Số thực với tập trù mật. 8.1. Tập trù mật. 8.2. Ví dụ. 8.3. Bài tập. Chương 9. Những ứng dụng khác của nguyên lý Đirichlê. 9.1. Xấp xỉ một số thực. 9.2. Bài tập. Chương 10. Nguyên lý Đirichlê cho diện tích. 10.1. Phát biểu nguyên lý Đirichlê cho diện tích. 10.2. Ví dụ. 10.3. Bài tập. Chương 11. Toán học tổ hợp. 11.1. Ví dụ. 11.2. Bài tập. Chương 12. Một số bài tập hình học khác. 12.1. Ví dụ. 12.2. Bài tập. Chương 13. Một số đề thi vô địch. Chương 14. Bài tập tự giải. Chương 15. Lời giải và gợi ý.

Nguồn: toanmath.com

Đọc Sách

Phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021
Tài liệu gồm 224 trang, được tổng hợp bởi thầy giáo Diệp Tuân, phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021. Chương 1. Các lớp 6 – 7 – 8. Chương 2. Căn thức bậc hai. Chương 3. Hàm số bậc nhất. Chương 4. Hệ hai phương trình bậc nhất hai ẩn. Chương 5. Hàm số y = ax^2 (a khác 0) – phương trình bậc hai. Chương 6. Hệ thức lượng trong tam giác vuông. Chương 7. Đường tròn. Chương 8. Góc với đường tròn. Chương 9. Hình trụ – hình nón – hình cầu. Chương 10. Bất đẳng thức.
Các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 62 trang, được biên soạn bởi nhóm tác giả Mathpiad − Tạp chí và tư liệu toán học: Phan Quang Đạt − Nguyễn Nhất Huy − Dương Quỳnh Châu, tổng hợp các bài toán số học tuyển chọn từ các đề tuyển sinh lớp 10 chuyên Toán, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 chuyên Toán. Chương I : Một số kiến thức sử dụng trong tài liệu. 1 Các định nghĩa ngoài sách giáo khoa. + Số chính phương là số có thể biểu diễn dưới dạng bình phương của một số tự nhiên. + Số lập phương là số có thể biểu diễn dưới dạng lập phương của một số nguyên. 2 Các kí hiệu, quy ước ngoài sách giáo khoa. + Kí hiệu a | b dùng thay cho mệnh đề “a là ước của b”, và đọc là “a chia hết b”. + Kí hiệu (a,b) dùng để chỉ ước chung lớn nhất của a và b. Đôi lúc, nó còn dùng để chỉ cặp số (a,b), vì thế cần phân biệt rõ. + Kí hiệu a ≡ b (mod m) dùng thay cho mệnh đề “a và b có cùng số dư khi chia cho m” và đọc là “a đồng dư với b theo modulo m”. 3 Các hằng đẳng thức mở rộng. 4 Các tính chất về ước chung lớn nhất. + Với các số nguyên a, b, c khác 0 thỏa mãn c | ab và (a,c) = 1, ta có thể suy ra c | b. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c2 và (a,c) = 1, ta có |a| và |b| là hai số chính phương. + Với các số nguyên a, b, c khác 0 thỏa mãn ab = c3 và (a,c) = 1, ta có a và b là hai số lập phương. 5 Các tính chất về đồng dư thức và chia hết. (a) Tính chia hết của tổng, tích các số nguyên liên tiếp. + Tổng của n số nguyên liên tiếp luôn chia hết cho n. + Tích của n số nguyên liên tiếp luôn chia hết cho n!, ở đây n! là tích của tất cả các số tự nhiên từ 1 đến n. (b) Nếu a ≡ b (mod m). (c) Một số chính phương bất kì chỉ có thể: + Đồng dư với 0 hoặc 1 theo modulo 3. + Đồng dư với 0 hoặc 1 theo modulo 4. + Đồng dư với 0,1 hoặc 4 theo modulo 8. (d) Định lý Fermat nhỏ: Cho p là số nguyên tố và a là số nguyên dương thỏa mãn a không chia hết cho p, khi đó a^ p − 1 ≡ 1 (mod p). 6 Bổ đề kẹp. Giữa hai lũy thừa số mũ n liên tiếp, không tồn tại một lũy thừa cơ số n nào. Hệ quả: với mọi số nguyên a: + Không có số chính phương nào nằm giữa a2 và (a + 1)2. + Số chính phương duy nhất nằm giữa a2 và (a + 2)2 là (a + 1)2. + Có đúng k − 1 số chính phương nằm giữa a2 và (a + k)2. 7 Bổ đề về nghiệm nguyên của phương trình bậc hai. Nếu phương trình bậc hai với hệ số nguyên ax2 + bx + c = 0 có hai nghiệm nguyên (không nhất thiết phân biệt) thì ∆ = b2 −4ac là số chính phương. Chương II : Giới thiệu một số bài toán số học trong đề thi vào lớp 10 chuyên Toán. Chương III : Lời giải tham khảo.
Một số phương pháp chứng minh bất đẳng thức
Tài liệu gồm 78 trang, hướng dẫn một số phương pháp chứng minh bất đẳng thức, đây thường là bài toán khó nhất trong các đề thi tuyển sinh vào lớp 10 môn Toán. I. Bất đẳng thức Côsi. + Dạng 1. Dạng tổng sang tích. + Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp. + Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Côsi. + Dạng 4. Ghép cặp đôi. + Dạng 5. Dự đoán kết quả rồi tách thích hợp. + Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kết quả. + Dạng 7. Tìm lại điều kiện của ẩn. II. Bất đẳng thức Bunhia. III. Phương pháp biến đổi tương đương. + Dạng 1. Đưa về bình phương. + Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một. + Dạng 3. Tạo ra ab + bc + ca. + Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tồn tại hai số có tích không âm. + Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1. + Dạng 6. Dự đoán kết quả rồi xét hiệu. Hệ thống bài tập sử dụng trong chủ đề. 1. Bất đẳng thức Côsi. 2. Bất đẳng thức Bunhia. 3. Phương pháp biến đổi tương đương.
Các bài toán sử dụng nguyên lý bất biến trong giải toán
Tài liệu gồm 16 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán sử dụng nguyên lý bất biến trong giải toán, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Nguyên lý bất biến. Cho a, b, c là những số thực ta xét tổng S = a + b + c. Nếu ta đổi chỗ a cho b, b cho c, c cho a, thì tổng S luôn luôn chỉ là một (không đổi). Tổng này không thay đổi đối với thứ tự phép cộng. Dù a, b, c có thay đổi thứ tự như thế nào chăng nữa S vẫn không thay đổi, nghĩa là S bất biến đối với việc thay đổi các biến khác. Trong thực tế cũng như trong toán học, rất nhiều vấn đề liên quan đến một số đối tượng nghiên cứu lại bất biến đối với sự thay đổi của nhiều đối tượng khác. 2. Các bước áp dụng nguyên lý bất biến khi giải toán. Để giải toán được bằng đại lượng bất biến ta thực hiện theo các bước sau: + Bước 1: Ta phải phát hiện ra những đại lượng bất biến trong bài toán. Bước này tương đối khó nếu ta không luyện tập thường xuyên. + Bước 2: Xử lý tiếp đại lượng bất biến để tìm ra các điểm mâu thuẫn. B. BÀI TẬP VẬN DỤNG C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ