Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Tiên Du 1 Bắc Ninh

Nội dung Đề thi KSCL lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần thứ 2 giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Đề thi KSCL Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để nâng cao kiến thức và kỹ năng giải Toán lớp 11, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh : + Trong khai triển nhị thức (2x – y)^8. Khẳng định nào sau đây là đúng? A. có số mũ của x và số mũ của y ở mỗi hạng tử luôn bằng nhau. B. có tổng số mũ của x và y trong mỗi hạng tử đều bằng 8. C. có hệ số mỗi hạng tử là như nhau. D. có 8 hạng tử. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. đường thẳng đi qua S. B. đường thẳng đi qua S và giao điểm của AC và BD. C. đường thẳng đi qua S song song với AB, CD. D. đường thẳng đi qua S và song song với AD và BC. [ads] + Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Lấy ngẫu nhiên một số trong tập tập hợp X. Gọi A là biến cố lấy được số có đúng hai chữ số 1, có đúng hai chữ số 2, bốn chữ số còn lại đôi một khác nhau, đồng thời các chữ số giống nhau không đứng liền kề nhau. Xác suất của biến cố A bằng? + Một người đi làm với mức lương khởi điểm 4 triệu đồng/1 tháng. Cứ sau 3 năm thì tăng lương 1 lần với mức tăng 15% của tháng lương trước đó. Hỏi năm đi làm thứ 20 thì mức lương của người đó mỗi tháng nhận được xấp xỉ gần nhất với con số nào sau đây? + Cho tứ diện ABCD và M, N lần lượt là các điểm trên hai cạnh AB, CD sao cho AM/MB + CN/ND = k > 0 và (α) là mặt phẳng qua MN và song song với cạnh BC, gọi P là giao điểm của (α) với cạnh AC. Tìm k biết tỷ số diện tích tam giác MNP và diện tích thiết diện của tứ diện được cắt bởi mặt phẳng (α) bằng 1/3. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi thử THPTQG năm 2017 - 2018 Toán 11 trường Yên Dũng 3 - Bắc Giang lần 3
Đề thi thử THPTQG năm học 2017 – 2018 môn Toán 11 trường THPT Yên Dũng số 3 – Bắc Giang lần 3 mã đề 113 gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đây là một bước chuẩn bị sớm dành cho các em học sinh lớp 11 khi mà đề thi THPT Quốc gia môn Toán từ năm 2018 trở đi sẽ chứa cả nội dung kiến thức Toán 11 theo như định hướng của Bộ GD và ĐT, các em học sinh lớp 12 cũng có thể tham khảo đề này để ôn lại các nội dung Toán 11 chuẩn bị cho kỳ thi THPT Quốc gia sắp tới, đề thi thử Toán 11 có đáp án . Trích dẫn đề thi thử THPTQG năm 2017 – 2018 Toán 11 : + Cho hình vuông ABCD tâm O (điểm được đặt theo chiều kim đồng hồ). M, N, I, J theo thứ tự là trung điểm của AB, BC, CD, DA. Gọi V là phép vị tự tâm O tỉ số k = 2 và Q là phép quay tâm O, góc quay 45 độ. Phép biến hình F được xác định bởi: F(M) = V[Q(M)] với mọi điểm M. Qua F ảnh của đoạn thẳng NJ là? [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. G là trọng tâm ΔABM, điểm D(7; -2) nằm trên đoạn MC sao cho GD = GA. Đường thẳng AG có phương trình 3x – y – 13 = 0, hoành độ điểm A nhỏ hơn 4. Phương trình đường thẳng AB là: ax + by – 3 = 0. Khi đó a + b = ? + Đặt thêm năm số nữa vào giữa hai số dương a/b^2 và b/a^2 để được một cấp số nhân có công bội q > 0. Hỏi có bao nhiêu cấp số nhân thỏa mãn điều kiện trên?
Đề thi KSCL Toán 11 năm 2017 - 2018 trường Thạch Thành 1 - Thanh Hóa lần 2
Đề thi KSCL Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa lần 2 gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm đánh giá kiến thức môn Toán của học sinh khối 11 sau kỳ nghỉ lễ Tết Nguyên Đán 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi KSCL Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của SC, AB, AD. 1. Tìm giao điểm của SD với mặt phẳng (ABM). 2. Dựng thiết diện của hình chóp với mặt phẳng (MNP). [ads] + Tìm m để đồ thị hàm số: y = x^4 – (3m + 1)x^2 + 2m + 3 cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành một cấp số cộng. + Cho đường tròn (C): (x – 2)^2 + (y + 3)^2 = 25 và điểm M(7; -3). 1. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép vị tự tâm J(3; 1) tỷ số k = -3. 2. Viết phương trình đường thẳng d đi qua M cắt (C) tại hai điểm phân biệt A, B sao cho AB > 7 và diện tích tam giác IAB bằng 12. (với I là tâm của đường tròn (C)).
Đề thi thử THPT Quốc gia năm 2017 - 2018 môn Toán 11 trường Hải An - Hải Phòng
Đề thi thử THPT Quốc gia năm học 2017 – 2018 môn Toán 11 trường THPT Hải An – Hải Phòng gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm giúp học sinh khối 11 sớm làm quen với hình thức đề thi THPT Quốc gia, đồng thời từng bước ôn luyện kiến thức Toán 11 nhằm chuẩn bị cho kỳ thi năm sau, đề thi có đáp án (gạch chân). Trích dẫn đề thi thử Toán 11 : + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp có dạng một hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông, SA = SB = SC = SD = 600m và góc ASB = BSC = CSD = DSA = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm 4 đoạn thẳng AM, MN, NP và PQ (Hình vẽ). Để tích kiệm kinh phí, kĩ sư đã nghiên cứu và có được chiều dài đường cong từ A đến Q ngắn nhất. Khi đó hãy cho biết tỉ số k = (AM + MN)/(NP + PQ). + Từ tỉnh A đến tỉnh B có thể đi bằng ô tô, tàu hỏa, tàu thủy hoặc máy bay. Từ tỉnh B đến tỉnh C có thể đi bằng ô tô hoặc tàu hỏa. Biết rằng muốn đi từ tỉnh A đến tỉnh C bắt buộc phải đi qua tỉnh B. Số cách đi từ tỉnh A đến tỉnh C là? [ads] + Trong các mệnh đề sau, mệnh đề nào đúng: A. Hai đường thẳng không có điểm chung thì chéo nhau. B. Hai đường thẳng không song song thì chéo nhau. C. Hai đường thẳng không cắt nhau và không song song thì chéo nhau. D. Hai đường thẳng chéo nhau thì có không điểm chung.
Đề khảo sát Toán 11 lần 1 năm học 2017 - 2018 trường THPT Yên Phong 1 - Bắc Ninh
Đề khảo sát Toán 11 lần 1 năm học 2017 – 2018 trường THPT Yên Phong 1 – Bắc Ninh mã đề 132 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm đánh giá chất lượng học tập môn Toán 11 của học sinh, đồng thời tạo điều kiện cho các em ôn luyện, chuẩn bị sớm cho kỳ thi THPT Quốc gia 2019, đề khảo sát có đáp án . Trích dẫn đề khảo sát Toán 11 lần 1 : + Hãy chọn câu sai. A. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì sẽ cắt mặt phẳng còn lại. B. Nếu mặt phẳng (P) chứa hai đường thẳng cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. C. Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia. D. Nếu hai mặt phẳng (P) và (Q) song song nhau thì mọi mặt phẳng (R) đã cắt (P) đều phải cắt (Q) và các giao tuyến của chúng song song nhau. [ads] + Tìm mệnh đề sai trong các mệnh đề sau. A. Phép đồng dạng biến đường tròn thành đường tròn. B. Phép quay là phép dời hình. C. Phép tịnh tiến là phép dời hình. D. Phép vị tự bảo toàn khoảng cách giữa hai điểm bất kì. + Trong một kì thi, mỗi thí sinh được phép thi ba lần. Xác suất lần đầu vượt qua kì thi là 0,9. Nếu trượt lần đầu thì xác suất vượt qua kì thi lần thứ hai là 0,7. Nếu trượt cả hai lần thì xác suất vượt qua kì thi ở lần thứ ba là 0,3. Tính xác suất để thí sinh thi đỗ.