Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 vòng 1 năm 2023 - 2024 trường THPT chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 09 năm 2023. Trích dẫn Đề thi HSG Toán 9 vòng 1 năm 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam : + Với các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. + Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AB, AC lần lượt lấy các điểm M, N và trên cạnh BC lấy các điểm P, Q sao cho tứ giác MNPQ là hình vuông. Gọi E là giao điểm của CM với PN, F là giao điểm của BN với MQ. 1) Chứng minh rằng đường thẳng PF song song với đường thẳng CM. 2) Lấy điểm G trên đoạn thẳng MN sao cho GM = QF. Chứng minh: Tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3) Đường thẳng qua Q song song với GE cắt đường thẳng qua P song song với GF tại S, các đường thẳng SM, SN cắt BC lần lượt tại K, L. Chứng minh: KL2 = QK.PL. + Một tập con A của tập hợp các số nguyên dương được gọi là tập tốt nếu thỏa mãn đồng thời các điều kiện sau: i) Tập A chứa ít nhất 2 phần tử. ii) Phần tử lớn nhất của tập A là 2023. iii) Với mọi cặp phần tử a, b thuộc A mà a > b, ta luôn có (a – b)/(a;b) thuộc A, trong đó (a;b) là ước chung lớn nhất của a và b. 1) Chỉ ra một tập tốt có nhiều phần tử nhất. 2) Xác định tất cả các tập tốt.
Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 19 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Cho đường tròn O R có đường kính AB. Điểm C là điểm bất kỳ trên O (C AC B). Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt tại P và Q a) Chứng minh 0 POQ 90 và 2 AP BQ R. b) OP cắt AC tại M OQ cắt BC tại N. Gọi H I lần lượt là trung điểm của MN và PQ. Đường trung trực của MN và đường trung trực của PQ cắt nhau tại K. Chứng minh AB IK 4. c) Chứng minh NMQ NPQ. + Cho hình vuông ABCD có độ dài đường chéo bằng 1. Tứ giác MNPQ có các đỉnh nằm trên các cạch của hình vuông. Chứng minh rằng chu vi tứ giác MNPQ không nhỏ hơn 2. + Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm 1 2 x x thỏa 1 2 2 2 1 2 1 2 x x T đạt giá trị nhỏ nhất.
Đề thi HSG Toán 9 cấp quận năm 2022 - 2023 phòng GDĐT Hải An - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề thi HSG Toán 9 cấp quận năm 2022 – 2023 phòng GD&ĐT Hải An – Hải Phòng : + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE. + Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? + Cho các số nguyên dương abc thỏa mãn 222 abc Chứng minh rằng ab chia hết cho: abc.
Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Cho a, b, c là các số nguyên đôi một khác nhau. Chứng minh rằng trong ba phương trình sau, có ít nhất một phương trình có nghiệm: x² – 2ax + bc + 1 = 0, x² – 2bx + ca + 1 = 0, x² – 2cx + ab + 1 = 0. Cho các số nguyên x, y thỏa mãn 2×2 − y2 = 1. Chứng minh xy(x2 − y2) chia hết cho 40. + Một giải cầu lông có n (n ≥ 2) vận động viên tham gia thi đấu theo thể thức vòng tròn một lượt (hai vận động viên bất kỳ thi đấu với nhau đúng một trận, không có kết quả hòa). Chứng minh rằng tổng các bình phương số trận thắng và tổng các bình phương số trận thua của các vận động viên là bằng nhau. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), AD là đường cao (D thuộc BC). Gọi E, F lần lượt là hình chiếu của D trên AC và AB. a) Chứng minh tứ giác BCEF nội tiếp. b) Đường tròn đường kính AD cắt (O) tại điểm thứ hai là M (M khác A). Chứng minh MD là phân giác của góc FMC. c) Chứng minh đường thẳng MD, đường trung trực của BC và đường trung trực của EF đồng quy.