Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 2 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 2 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi mã đề 134 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án. Trích dẫn Đề khảo sát lần 2 Toán lớp 10 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Trong chuỗi hoạt động Văn hóa – Thể dục thể thao chào mừng Tết Quý Mão của trường THPT Thuận Thành số 1, có 2 học sinh An và Bình đã tham gia thi đấu bóng chuyền cùng các bạn trong đội. An đứng tại vị trí O thực hiện một đường chuyền bóng dài cho Bình đứng tại vị trí H, quả bóng di chuyển theo một đường parabol (hình vẽ bên dưới). Quả bóng rời tay An ở vị trí A và tay Bình bắt được quả bóng ở vị trí B, khi quả bóng di chuyển từ An đến Bình thì đi qua điểm C. Quy ước trục Ox là trục đi qua hai điểm O và H, trục Oy đi qua hai điểm O và A như hình vẽ. Biết rằng OA BH 1,7 m CK 3,4625 m OK 2,5 m OH 10 m. Hãy xác định khoảng cách lớn nhất của quả bóng so với mặt đất khi An chuyền bóng cho Bình. + Cho tam giác ABC. Gọi m m m a b c tương ứng là độ dài các đường trung tuyến hạ từ các đỉnh A B C. Biết 2 2 2 5m m m a b c mệnh đề nào sau đây là mệnh đề đúng? A. ABC là tam giác đều. B. ABC có một góc tù. C. ABC là tam giác vuông. D. ABC có ba góc nhọn.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm định Toán 10 lần 2 năm 2020 - 2021 trường THPT Yên Phong 2 - Bắc Ninh
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm định chất lượng môn Toán lớp 10 năm học 2020 – 2021 lần thứ hai. Đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh được biên soạn theo hình thức đề 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề kiểm định Toán 10 lần 2 năm 2020 – 2021 trường THPT Yên Phong 2 – Bắc Ninh : + Trong mặt phẳng Oxy, cho ba điểm. a) Viết phương trình tổng quát của đường thẳng ∆ đi qua trung điểm I của AB và vuông góc với BC. b) Tìm giao điểm của đường thẳng ∆ với các trục tọa độ. c) Tìm điểm M thuộc ∆ và cách đều hai điểm A C. + Cho các số thực a b c sao cho tồn tại tam giác có độ dài ba cạnh là a b c và chu vi bằng 2 (cùng đơn vị đo). Chứng minh rằng. + Hình vẽ sau đây là đồ thị của hàm số nào trong bốn hàm số cho ở các đáp án A, B, C, D?
Đề kiểm tra Toán 10 lần 2 năm 2020 - 2021 trường Hàn Thuyên - Bắc Ninh
Đề kiểm tra Toán 10 lần 2 năm học 2020 – 2021 trường THPT Hàn Thuyên, tỉnh Bắc Ninh gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra Toán 10 lần 2 năm 2020 – 2021 trường Hàn Thuyên – Bắc Ninh : + Cổng vào thành phố X có hình dạng xem như một Parabol (hình vẽ). Trên thành cổng, tại vị trí cao 45m so với mặt đất (tại điểm M thuộc cung AB), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất), vị trí chạm mặt đất của đầu sợi dây cách chân cổng đoạn 10m. Xác định chiều cao của cổng tính từ mặt đất đến điểm cao nhất của cổng. + Trong hệ trục tọa độ Oxy, cho u(3;2), v(0;1). Tập hợp điểm M thoả mãn khi m thay đổi là: A. Đường thẳng có phương trình (d): x 3y 3 0. B. đường thẳng có phương trình (d): 3x y 1 0. C. đường thẳng có phương trình (d): 2x 3y 0. D. đường thẳng có phương trình (d): y 0. + Trong hệ trục tọa độ Oxy, cho đường thẳng (d) có phương trình: x y 1 2 3. Khi đó, số mệnh đề đúng trong các mệnh đề dưới đây là: 1) (d) có một véc tơ pháp tuyến là n(2;3). 2) (d) cắt trục Ox tại điểm A(2;0). 3) (d) cắt trục Oy tại điểm B(0;3). 4) (d) có một véc tơ pháp tuyến là (6;4).
Đề khảo sát Toán 10 lần 1 năm 2020 - 2021 trường Tiên Du 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề được biên soạn theo hình thức đề 50% trắc nghiệm + 50% tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2020 – 2021 trường Tiên Du 1 – Bắc Ninh : + Với H, K là các mệnh đề và có một định lý được phát biểu dưới dạng “Nếu H thì K”. Khẳng định nào sau đây là đúng? A. H là điều kiện cần để có K. B. K không là điều kiện cần để có H. C. K là điều kiện đủ để có H. D. H là điều kiện đủ để có K. + Cho hình vuông ABCD có cạnh bằng a. Gọi điểm M là trung điểm của cạnh AB. Gọi điểm N thỏa mãn AN = 3/4.AC. Chứng minh rằng: MN.ND = 0. + Cho phương trình 3√(x2 – 2x + 3) = x2 – 2x + m với tham số m thuộc R. Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn [0;3].
Đề kiểm tra Toán 10 lần 1 năm 2020 - 2021 trường THPT Lý Thái Tổ - Bắc Ninh
Đề kiểm tra chất lượng Toán 10 lần 1 năm học 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 01 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán 10 lần 1 năm 2020 – 2021 trường THPT Lý Thái Tổ – Bắc Ninh : + Một người cần phải làm cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật, có chu vi là 8 ( là chu vi hình bán nguyệt cộng với chu vi hình chữ nhật trừ đi độ dài cạnh hình chữ nhật là đường kính của hình bán nguyệt). Hãy xác định các kích thước của của hình chữ nhật để diện tích cửa sổ là lớn nhất. + Tìm tập xác định của các hàm số sau. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(1;-1), B(3;2), C(1;-4). 1) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính độ dài trung tuyến AM của tam giác ABC. 2) Tìm tọa độ trực tâm H của tam giác ABC.