Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Ngô Thì Nhậm Ninh Bình

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Ngô Thì Nhậm Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Ngô Thì Nhậm, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm mã đề 146. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Ngô Thì Nhậm – Ninh Bình : + Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi loại lần lượt là 5 triệu đồng/1 chiếc và 10 triệu đồng/1 chiếc, với số vốn ban đầu không vượt quá 1 tỉ đồng. Máy A mang lại lợi nhuận 1,5 triệu đồng trên mỗi máy bán được, máy B mang lại lợi nhuận 2 triệu đồng trên mỗi máy bán được. Cửa hàng đó ước tính hàng tháng bán được nhiều nhất là 120 cái. Hỏi lợi nhuận lớn nhất mà cửa hàng thu về trong một tháng là bao nhiêu. + Một khách sạn ở thành phố Ninh Bình bị nước lụt tràn vào, cần di chuyển cùng một lúc 80 hành khách và 60 vali hành lý. Lúc này chỉ huy động được 10 chiếc thuyền lớn và 12 chiếc thuyền nhỏ. Một chiếc thuyền lớn chỉ có thể chở 10 hành khách và 9 vali hành lý. Một chiếc thuyền nhỏ chỉ có thể chở 8 hành khách và 6 vali hành lý. Giá một chuyến thuyền lớn là 300 (ngàn đồng) và giá một chuyến thuyền nhỏ là 250 (ngàn đồng). Hỏi chủ khách sạn cần thuê bao nhiêu chiếc thuyền mỗi loại để chi phí thấp nhất? + Một nhóm có 25 học sinh chuẩn bị cho hội thi thể thao. Trong danh sách đăng ký tham gia thi cầu lông và bóng bàn của nhóm đó, có 12 học sinh tham gia thi cầu lông, có 5 học sinh tham gia cả hai môn cầu lông và bóng bàn. Có 4 học sinh của nhóm không tham gia bất kỳ môn thể thao nào. Hỏi có bao nhiêu học sinh trong nhóm tham gia thi bóng bàn? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y – 1 = 0 và N(1/2;-3/2). Xác định tọa độ điểm A. + Tập hợp X có 2^n phần tử được chia thành các tập con đôi một không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón ác loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho hình bình hành ABCD. Gọi M là trung điểm cạnh CD; N là điểm thuộc cạnh AD sao cho AN = 1/3AD. Gọi G là trọng tâm tam giác BMN, đường thẳng AG cắt BC tại K. Tính tỉ số BK/BC.