Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Trương Công Định - Hải Phòng

Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 trường THCS Trương Công Định, quận Lê Chân, thành phố Hải Phòng gồm 2 trang, đề gồm 5 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề khảo sát Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Trương Công Định – Hải Phòng : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 3)x – 2m + 2 (m là tham số và m thuộc R). a) Với m = 5, hãy tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d). b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt nằm cùng phía bên phải trục tung. + Theo Điều 6 Nghị định 171/2013/NĐ-CP về xử phạt vi phạm hành chính trong lĩnh vực giao thông đường bộ và đường sắt. Cụ thể: Đối với ôtô: – Phạt tiền từ 600.000 đồng đến 800.000 đồng nếu điều khiển xe chạy quá tốc độ quy định từ 05 km/h đến dưới 10 km/h. – Phạt tiền từ 2 triệu đồng đến 3 triệu đồng nếu điều khiển xe chạy quá tốc độ quay định từ 10 km/h đến 20 km/h. – Phạt tiền từ 4 triệu đồng đến 6 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 20 km/h đến 35 km/h. – Phạt tiền từ 7 triệu đồng đến 8 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 35 km/h; điều khiển xe đi ngược chiều trên đường cao tốc, trừ các xe ưu tiên đang đi làm nhiệm vụ khẩn cấp theo quy định. [ads] Áp dụng các quy định trên để giải bài toán sau: Một cơ quan tổ chức di du lịch bằng 2 xe ô tô qua đường cao tốc Hải Phòng – Hà Nội dài 120km. Hai xe cùng khởi hành một lúc tại đầu đường cao tốc phía Hải Phòng, xe thứ nhất chạy chậm hơn xe thứ hai 44 km/h do đó xe thứ nhất đến hết đường cao tốc chậm hơn xe thứ hai là 22 phút. Biết rằng khi đến cuối đường có trạm kiểm soát tốc độ, hỏi khi đó có xe nào trong hai xe bị xử phạt vi phạm tốc độ hay không? Mức xử phạt là bao nhiêu tiền? (Giả sử vận tốc hai xe không đổi trên đường cao tốc, vận tốc tối đa cho phép là 120 km/h). + Cho hình chữ nhật ABCD có BC = 3cm, AB = 4cm. Quay hình chữ nhật đó một vòng quanh AB được một hình trụ. Tính diện tích xung quanh của hình trụ đó.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Đề tuyển sinh môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 - 2023 của sở GD&ĐT Đắk Nông. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GD&ĐT Đắk Nông: + Giải bài toán sau bằng cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 50 người. Vì thế, việc xét nghiệm hoàn thành sớm hơn kế hoạch 1 giờ. Hỏi theo kế hoạch, mỗi giờ thành phố Gia Nghĩa xét nghiệm được bao nhiêu người? + Cho nửa đường tròn đường kính AD. Lấy điểm B thuộc nửa đường tròn (B khác A và D), trên cung BD lấy điểm C (C khác B và D). Hai dây AC và BD cắt nhau tại điểm E. Kẻ đoạn thẳng EF vuông góc với AD (F thuộc AD). a) Chứng minh tứ giác ABEF nội tiếp. b) Chứng minh AE.AC = AF.AD. c) Chứng minh E là tâm đường tròn nội tiếp tam giác BFC. + Cho 4044 2022 2022 4x 9x 6 P x 2. Tìm giá trị của x để biểu thức P đạt giá trị nhỏ nhất.
Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên
Nội dung Đề tuyển sinh môn Toán (chung) năm 2022 2023 sở GD ĐT Điện Biên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Đề thi tuyển sinh môn Toán (chung) năm 2022-2023 sở GD ĐT Điện Biên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022-2023 của sở Giáo dục và Đào tạo Điện Biên. Kỳ thi sẽ diễn ra vào ngày ... tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chung) năm 2022-2023 sở GD&ĐT Điện Biên: 1. Một tổ công nhân dự định may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid-19. Nhờ cải tiến kỹ thuật, tổ công nhân mỗi ngày làm được thêm 5 kiện so với dự định. Vì vậy, tổ công nhân đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? 2. Cho đường tròn (O) và điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PM, PN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua P cắt đường tròn (O) tại hai điểm B, C (P, B, C không thẳng hàng). Câu hỏi yêu cầu chứng minh tứ giác PMON nội tiếp, chứng minh 2PN = PB + PC và tính độ dài đoạn BC khi PB = cm, PN = cm. 3. Cho tam giác ABC vuông tại A với các đường phân giác trong BM, CN. Yêu cầu chứng minh bất đẳng thức 3MC^2 + NA^2 >= 2NB^2 + MA*NA. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Ninh Thuận
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Thông báo về đề thi tuyển sinh THPT môn Toán Ninh Thuận năm 2022-2023 Thông báo về đề thi tuyển sinh THPT môn Toán Ninh Thuận năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của Sở Giáo dục và Đào tạo Ninh Thuận. Kỳ thi sẽ diễn ra vào ngày 01 tháng 07 năm 2022. Đề thi đã được chuẩn bị kèm theo đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi mẫu từ đề thi: Một lâm trường có hai đội công nhân thực hiện trồng cây phủ xanh đồi trọc. Nếu mỗi công nhân của đội thứ nhất trồng được 30 cây và mỗi công nhân của đội thứ hai trồng được 40 cây thì tổng số cây của cả hai đội trồng là 2880. Hãy tính số công nhân của mỗi đội biết tổng số công nhân của lâm trường là 82. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi D và E lần lượt là chân đường cao của tam giác ABC hạ từ B và C. Hãy chứng minh rằng tứ giác BEDC là tứ giác nội tiếp. Cho Parabol 2Py = x và đường thẳng d: y = mx + 4. 1. Vẽ Parabol P. 2. Tìm tất cả các giá trị của tham số m để Parabol P và đường thẳng d có đúng một điểm chung. Chúc quý thầy cô giáo và các em học sinh lớp 9 học tập tốt, ôn luyện kỹ trước kỳ thi sắp tới. Đừng quên thực hành nhiều bài tập để chuẩn bị tốt nhất cho kỳ thi quan trọng này. Cảm ơn bạn đã theo dõi thông báo này!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD&ĐT Phú Yên Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD&ĐT Phú Yên Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Phú Yên. Kỳ thi sẽ diễn ra vào ngày 14 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Một số câu hỏi trong đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Phú Yên: 1. Đường tròn có bao nhiêu trục đối xứng? A. Có vô số trục đối xứng. B. Chỉ có một trục đối xứng. C. Có hai trục đối xứng. D. Không có trục đối xứng nào. 2. Tính diện tích phần không tô màu, giới hạn bởi nửa đường tròn AC, nửa đường tròn AB và nửa đường tròn BC với đường kính lần lượt là 8 cm và 4 cm. 3. Giải bài toán: Phú và Yên cùng tham gia cuộc thi marathon cự li 10 km. Trên quãng đường 4 km đầu tiên, cả hai chạy cùng vận tốc, sau đó Phú tăng vận tốc thêm 2 km/h trong 6 km cuối. Kết quả Phú về đích sớm hơn Yên 6 phút. Hỏi vận tốc chạy của Yên là bao nhiêu?