Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai) - Lương Tuấn Đức

Tài liệu gồm 130 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai), đây là dạng toán thường gặp trong chương trình Đại số 10 chương 3 và chương 4, các bài toán trong tài liệu đều được phân tích và giải quyết chi tiết. Nội dung chủ đạo là dùng hai hoặc nhiều ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng, một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. [ads] Kiến thức và kỹ năng chuẩn bị khi tìm hiểu tài liệu: 1. Nắm vững các phép biến đổi đại số cơ bản (nhân, chia đa thức, phân tích đa thức thành nhân tử, biến đổi phân thức đại số và căn thức). 2. Kỹ năng biến đổi tương đương, nâng lũy thừa, phân tích hằng đẳng thức, thêm bớt. 3. Nắm vững lý thuyết bất phương trình, dấu nhị thức bậc nhất, dấu tam thức bậc hai. 4. Nắm vững kiến thức về đa thức đồng bậc, các thao tác cơ bản với phương trình một ẩn phụ. 5. Bước đầu thực hành giải và biện luận các bài toán phương trình bậc hai, bậc cao với tham số, giải hệ phương trình bằng phương pháp thế, phương pháp cộng đại số, giải hệ phương trình đối xứng loại 1, loại 2; hệ phương trình đồng bậc; hệ phương trình đa ẩn. 6. Sử dụng thành thạo các ký hiệu logic trong phạm vi toán phổ thông.

Nguồn: toanmath.com

Đọc Sách

Kinh nghiệm giải Oxy và phương trình trong đề thi Quốc gia - Nguyễn Lê Đức Trọng
Tài liệu gồm 77 trang truyền đạt các kinh nghiệm giải Oxy và phương trình trong đề thi THPT Quốc gia do tác giả đúc kết qua quá trình học tập. Lời giới thiệu : Tôi là một cựu học sinh của trường THPT Chuyên Thủ Khoa Nghĩa, niên khoá 2013 – 2016 và vừa trải qua kì thi THPT Quốc gia năm 2016. Trong quá trình ôn luyện thi môn Toán, tôi có một số kinh nghiệm đúc kết cho bản thân thông qua việc làm bài tập, đặc biệt là trong các dạng bài tập phân loại như hình học giải tích phẳng Oxy, phương trình, hệ phương trình, bất phương trình. Riêng phần bất đẳng thức, giá trị lớn nhất, nhỏ nhất tôi sẽ hoàn thành nếu còn thời gian. Bây giờ, tôi thực hiện bài viết này nhằm chia sẻ với các bạn điều đó, vì trong thời gian sau thi hầu như tôi khá rãnh rỗi. Bài viết không chất chứa nhiều bài toán, vì tôi nghĩ với xu thế thị trường sách tham khảo phong phú như bây giờ thì việc tìm những quyển sách tham khảo cho mỗi bạn không hề khó khăn, các bạn có rất nhiều sự lựa chọn tác giả và đầu sách phù hợp với khả năng, sở thích của mình. Vì thế, bài viết này chỉ đơn giản là một tài liệu nhằm trao đổi kinh nghiệm trong việc giải toán, một công cụ để các bạn tìm ra lời giải cho bài toán, chứ không nhằm tiếp thu nhiều dạng toán khác nhau. [ads] Bài viết này phù hợp với các bạn học sinh đã học xong chương trình toán lớp 10, những bạn có mục tiêu điểm 7, 8, 9 môn Toán trong kì thi THPT Quốc gia và tuyển sinh ĐH, CĐ sắp tới. Vì cũng chỉ là người đã từng tiếp thu tri thức, người đã đi trước các bạn một bước trong quá trình chuẩn bị cho kì thi lớn trong cuộc đời học sinh, nên trình độ nhận thức của tôi đôi khi cũng rất hạn chế. Bài viết này là những nhận thức chủ quan, có khi đúng, có khi sai, nhưng tôi sẽ cố gắng hạn chế tối đa những sai lầm. Chúng ta có thể trao đổi với nhau để tìm ra con đường ngắn hơn để đi đến kết quả cuối cùng. Tôi luôn sẵn sàng tiếp nhận những ý kiến trao đổi của các bạn và nhìn nhận sai lầm của mình. Hi vọng bài viết sẽ là công cụ hữu ích cho các bạn trong bước đường chuẩn bị cho kì thi THPT Quốc gia 2017, 2018 và những năm tiếp theo. Chúc mọi người, đặc biệt là các bạn có được một quá trình rèn luyện và chuẩn bị tốt cho kì thi của riêng mình, đạt kết quả cao nhất.
164 bài toán hệ - bất - phương trình trong các đề thi thử Quốc gia 2016 - Trần Văn Tài
Tài liệu gồm 92 trang tuyển tập 164 bài toán hệ phương trình và bất phương trình trong các đề thi thử Quốc gia 2016 từ các trường và các sở GD và ĐT trên toàn quốc, mỗi bài toán đều được giải chi tiết đến đáp số cuối cùng. Các bài toán được sưu tầm và tổng hợp bởi thầy Trần Văn Tài. Hy vọng qua các lời giải chi tiết, bạn đọc có thể năm vững được các kỹ năng giải hệ phương trình và bất phương trình mức độ vận dụng cao, để từ đó không con cảm thấy “e ngại” các bài toán điểm 9, 10 trong đề thi THPT Quốc gia môn Toán. [ads]
Tuyển tập 260 bài toán phương trình - Hệ phương trình - Bất phương trình trong các đề thi Quốc gia
Tài liệu gồm 95 trang tuyển chọn 260 bài toán phương trình – hệ phương trình – bất phương trình trong các đề thi Quốc gia. Các bài toán gồm nhiều dạng bài khác nhau và được phân tích, giải chi tiết, qua đó bạn đọc sẽ năm được các dạng toán thường xuất hiện để có phương pháp, định hướng học tập phù hợp nhằm chinh phục điểm 9, 10 trong đề thi Đại học.