Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Quan Sơn - Thanh Hóa

Ngày 09 tháng 10 năm 2019, phòng Giáo dục và Đào tạo huyện Quan Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2019 – 2020. Đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa gồm có 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi gồm có 01 trang. [ads] Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Quan Sơn – Thanh Hóa : + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng: 1. AF.AB = AH.AD = AE.AC. 2. H là tâm đường tròn nội tiếp tam giác DEF. 3. Gọi M, N, P, I, K, Q lần lượt là trung điểm các đoạn thẳng BC, AC, AB, EF, ED, DF. Chứng minh rằng các đường thẳng MI, NQ, PK đồng quy. 4. Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a, b, c. Độ dài các đoạn thẳng AD, BE, CF là a’, b’, c’. Tìm giá trị nhỏ nhất của biểu thức: (a + b + c)^2/(a’^2 + b’^2 + c’^2). + Cho hai số dương a, b thỏa mãn: a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = 1/ab + 1/(a^2 + b^2). + Tìm các số nguyên x để biểu thức x^4 – x^2 + 2x + 2 là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2013 - 2014 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2013 – 2014 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2014; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2013 – 2014 sở GD&ĐT Ninh Bình : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx – 2 và parabol (P) có phương trình y 2 x 4. Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B. Tìm các giá trị của m để đoạn AB có độ dài nhỏ nhất. + Cho đường tròn tâm O đường kính MN, dây cung AB vuông góc với MN tại điểm I nằm giữa O, N. Gọi K là một điểm thuộc dây AB nằm giữa A, I. Các tia MK, NK cắt đường tròn tâm O theo thứ tự tại C, D. Gọi E, F, H lần lượt là hình chiếu của C trên các đường thẳng AD, AB, BD. Chứng minh rằng: a) AC.HF AD.CF b) F là trung điểm của EH c) Hai đường thẳng DC và DI đối xứng với nhau qua đường thẳng DN. + Cho n và k là các số tự nhiên 4 2k 1 An 4. a) Tìm k, n để A là số nguyên tố. b) Chứng minh rằng: + Nếu n không chia hết cho 5 thì A chia hết cho 5. + Với p là ước nguyên tố lẻ của A ta luôn có p – 1 chia hết cho 4.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 - 2013 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 – 2013 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 10/03/2013.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.