Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ

Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp huyện năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ tổ chức. Đề thi được thiết kế với hình thức 40% trắc nghiệm và 60% tự luận, thời gian làm bài là 150 phút (không tính thời gian giao đề). Đề thi có đáp án và lời giải chi tiết để các em có thể tự kiểm tra và ôn tập sau khi thi xong. Trích dẫn một số câu hỏi trong đề thi: Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. Hãy chứng minh rằng bốn điểm OMHI cùng thuộc một đường tròn. Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? Cho \(P(x)\) là một đa thức bậc \(n\) với hệ số nguyên, \(n \geq 2\). Biết \(P(1) = 2022\). Chứng minh rằng phương trình \(P(x) = 0\) không có nghiệm nguyên. Nếu quý thầy cô và các em quan tâm đến đề thi, vui lòng tải file WORD dưới đây để xem chi tiết và chuẩn bị cho kỳ thi sắp tới. Mong rằng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng Toán của mình. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.
Đề thi HSG Toán 9 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.